Loading…
The Multiple Subset Sum Problem
In the {\em multiple subset sum problem} (MSSP) items from a given ground set are selected and packed into a given number of identical bins such that the sum of the item weights in every bin does not exceed the bin capacity and the total sum of the weights of the items packed is as large as possible...
Saved in:
Published in: | SIAM journal on optimization 2000, Vol.11 (2), p.308-319 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053 |
container_end_page | 319 |
container_issue | 2 |
container_start_page | 308 |
container_title | SIAM journal on optimization |
container_volume | 11 |
creator | Caprara, Alberto Kellerer, Hans Pferschy, Ulrich |
description | In the {\em multiple subset sum problem} (MSSP) items from a given ground set are selected and packed into a given number of identical bins such that the sum of the item weights in every bin does not exceed the bin capacity and the total sum of the weights of the items packed is as large as possible. This problem is a relevant special case of the multiple knapsack problem, for which the existence of a polynomial-time approximation scheme (PTAS) is an important open question in the field of knapsack problems. One main result of the present paper is the construction of a PTAS for MSSP. For the bottleneck case of the problem, where the minimum total weight contained in any bin is to be maximized, we describe a 2/3-approximation algorithm and show that this is the best possible approximation ratio. Moreover, PTASs are derived for the special cases in which either the number of bins or the number of different item weights is constant. We finally show that, even for the case of only two bins, no fully PTAS exists for both versions of the problem. |
doi_str_mv | 10.1137/S1052623498348481 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920843834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582947741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053</originalsourceid><addsrcrecordid>eNplUMFKxDAUDKLguvoBnizeo-_1JWlylEVXYUVh13NokxR3aW1N2oN_b8t68zQDM8www9g1wh0iFfdbBJmrnITRJLTQeMIWCEbyArU5nbnM-ayfs4uUDgCgjdILdrP7DNnr2Az7vgnZdqxSGCZos_fYVU1oL9lZXTYpXP3hkn08Pe5Wz3zztn5ZPWy4I9QDd6V02nsiJTEPEryqVMDSBQXOSEOmdErUEAQYUghYVJ7qwoH3WoEESUt2e8ztY_c9hjTYQzfGr6nSmhy0oGnWZMKjycUupRhq28d9W8Yfi2DnG-y_G-gXRV1M8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920843834</pqid></control><display><type>article</type><title>The Multiple Subset Sum Problem</title><source>SIAM Journals Online</source><source>ABI/INFORM Global</source><creator>Caprara, Alberto ; Kellerer, Hans ; Pferschy, Ulrich</creator><creatorcontrib>Caprara, Alberto ; Kellerer, Hans ; Pferschy, Ulrich</creatorcontrib><description>In the {\em multiple subset sum problem} (MSSP) items from a given ground set are selected and packed into a given number of identical bins such that the sum of the item weights in every bin does not exceed the bin capacity and the total sum of the weights of the items packed is as large as possible. This problem is a relevant special case of the multiple knapsack problem, for which the existence of a polynomial-time approximation scheme (PTAS) is an important open question in the field of knapsack problems. One main result of the present paper is the construction of a PTAS for MSSP. For the bottleneck case of the problem, where the minimum total weight contained in any bin is to be maximized, we describe a 2/3-approximation algorithm and show that this is the best possible approximation ratio. Moreover, PTASs are derived for the special cases in which either the number of bins or the number of different item weights is constant. We finally show that, even for the case of only two bins, no fully PTAS exists for both versions of the problem.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/S1052623498348481</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Knapsack problem ; Linear programming ; Marble ; Optimization</subject><ispartof>SIAM journal on optimization, 2000, Vol.11 (2), p.308-319</ispartof><rights>[Copyright] © 2000 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053</citedby><cites>FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/920843834?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,4024,11688,27923,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Caprara, Alberto</creatorcontrib><creatorcontrib>Kellerer, Hans</creatorcontrib><creatorcontrib>Pferschy, Ulrich</creatorcontrib><title>The Multiple Subset Sum Problem</title><title>SIAM journal on optimization</title><description>In the {\em multiple subset sum problem} (MSSP) items from a given ground set are selected and packed into a given number of identical bins such that the sum of the item weights in every bin does not exceed the bin capacity and the total sum of the weights of the items packed is as large as possible. This problem is a relevant special case of the multiple knapsack problem, for which the existence of a polynomial-time approximation scheme (PTAS) is an important open question in the field of knapsack problems. One main result of the present paper is the construction of a PTAS for MSSP. For the bottleneck case of the problem, where the minimum total weight contained in any bin is to be maximized, we describe a 2/3-approximation algorithm and show that this is the best possible approximation ratio. Moreover, PTASs are derived for the special cases in which either the number of bins or the number of different item weights is constant. We finally show that, even for the case of only two bins, no fully PTAS exists for both versions of the problem.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Marble</subject><subject>Optimization</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplUMFKxDAUDKLguvoBnizeo-_1JWlylEVXYUVh13NokxR3aW1N2oN_b8t68zQDM8www9g1wh0iFfdbBJmrnITRJLTQeMIWCEbyArU5nbnM-ayfs4uUDgCgjdILdrP7DNnr2Az7vgnZdqxSGCZos_fYVU1oL9lZXTYpXP3hkn08Pe5Wz3zztn5ZPWy4I9QDd6V02nsiJTEPEryqVMDSBQXOSEOmdErUEAQYUghYVJ7qwoH3WoEESUt2e8ztY_c9hjTYQzfGr6nSmhy0oGnWZMKjycUupRhq28d9W8Yfi2DnG-y_G-gXRV1M8Q</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Caprara, Alberto</creator><creator>Kellerer, Hans</creator><creator>Pferschy, Ulrich</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2000</creationdate><title>The Multiple Subset Sum Problem</title><author>Caprara, Alberto ; Kellerer, Hans ; Pferschy, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Marble</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caprara, Alberto</creatorcontrib><creatorcontrib>Kellerer, Hans</creatorcontrib><creatorcontrib>Pferschy, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caprara, Alberto</au><au>Kellerer, Hans</au><au>Pferschy, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Multiple Subset Sum Problem</atitle><jtitle>SIAM journal on optimization</jtitle><date>2000</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>308</spage><epage>319</epage><pages>308-319</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>In the {\em multiple subset sum problem} (MSSP) items from a given ground set are selected and packed into a given number of identical bins such that the sum of the item weights in every bin does not exceed the bin capacity and the total sum of the weights of the items packed is as large as possible. This problem is a relevant special case of the multiple knapsack problem, for which the existence of a polynomial-time approximation scheme (PTAS) is an important open question in the field of knapsack problems. One main result of the present paper is the construction of a PTAS for MSSP. For the bottleneck case of the problem, where the minimum total weight contained in any bin is to be maximized, we describe a 2/3-approximation algorithm and show that this is the best possible approximation ratio. Moreover, PTASs are derived for the special cases in which either the number of bins or the number of different item weights is constant. We finally show that, even for the case of only two bins, no fully PTAS exists for both versions of the problem.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1052623498348481</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2000, Vol.11 (2), p.308-319 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_proquest_journals_920843834 |
source | SIAM Journals Online; ABI/INFORM Global |
subjects | Algorithms Approximation Knapsack problem Linear programming Marble Optimization |
title | The Multiple Subset Sum Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Multiple%20Subset%20Sum%20Problem&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Caprara,%20Alberto&rft.date=2000&rft.volume=11&rft.issue=2&rft.spage=308&rft.epage=319&rft.pages=308-319&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/S1052623498348481&rft_dat=%3Cproquest_cross%3E2582947741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-ca5c8dd336512e50d6b6e1ace60c95939ac64f0e409361017bd3f7c0dd8605053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920843834&rft_id=info:pmid/&rfr_iscdi=true |