Loading…
Methanol and other VOC fluxes from a Danish beech forest during late springtime
In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission occurred...
Saved in:
Published in: | Biogeochemistry 2011-11, Vol.106 (3), p.337-355 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission occurred during both day and night with highest fluxes (0.2 mg C m−2 h−1) during a warm period; deposition occurred dominantly at daytime. Confirming previous branch-level measurements on beech, the forest’s monoterpene emissions (0–0.5 mg C m−2 h−1), and in-canopy mixing ratios showed a diurnal cycle consistent with light-dependent emissions; a result contrasting temperature-only driven emissions of most conifer species. Also emitted was acetone, but only at ambient temperatures exceeding 20°C. Slow deposition dominated at lower temperatures. Our in-canopy gradient measurements contrast with earlier results from tropical and pine forest ecosystems in that they did not show this beech ecosystem to be a strong sink for oxygenated VOCs (OVOCs). Instead, their gradients were flat and only small deposition velocities ( |
---|---|
ISSN: | 0168-2563 1573-515X |
DOI: | 10.1007/s10533-010-9515-5 |