Loading…
Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A
Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated...
Saved in:
Published in: | Journal of Bacteriology 2012-02, Vol.194 (4), p.855-865 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3 |
container_end_page | 865 |
container_issue | 4 |
container_start_page | 855 |
container_title | Journal of Bacteriology |
container_volume | 194 |
creator | Benedict, Matthew N Gonnerman, Matthew C Metcalf, William W Price, Nathan D |
description | Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis. |
doi_str_mv | 10.1128/JB.06040-11 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_921169100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584575621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</originalsourceid><addsrcrecordid>eNpVkkFvEzEQhS0EoiFw4g4rJE5oy4x3vfFekNIIWqoiJNqerbHXm3WU2MHeFPrvcUgocLAsj7_3PPYzYy8RThG5fH95dgoN1FAiPmIThFaWQlTwmE0AOJYtttUJe5bSCgDrWvCn7IRzrFoBzYT9PLc-bGx5bWhtiy92JB3WzhTfrAk-jXFnRhd8Qb4rLu63YRxscqm4sWl0flk4X-TKXjaQD0vrs3IezUA2a47VRNE4TwUZO7q7EMmnYsHnz9mTntbJvjjOU3b76ePN4qK8-nr-eTG_Ko3gciy1FYS9tl0NHedW1lR1le5nAmpsJddNazvQuu4JkaSWnel534DtsJMzIl1N2YeD73anN7Yz1o-R1mob3YbivQrk1P873g1qGe5UxWe8FTIbvDkaxPB9ly-uVmEXfe5ZtRyxaREgQ-8OkIkhpWj7hwMQ1D4ldXmmfqeUV5l-9W9PD-yfWDLw9ghQysH0-dGMS385IUA0zSxzxYEb3HL44aJVlDZqpRW2taqVzP9gyl4fkJ6ComXMNrfXHFDAfnAJ1S-fE7D0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921169100</pqid></control><display><type>article</type><title>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</title><source>American Society for Microbiology</source><source>PubMed Central</source><creator>Benedict, Matthew N ; Gonnerman, Matthew C ; Metcalf, William W ; Price, Nathan D</creator><creatorcontrib>Benedict, Matthew N ; Gonnerman, Matthew C ; Metcalf, William W ; Price, Nathan D</creatorcontrib><description>Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>EISSN: 1067-8832</identifier><identifier>DOI: 10.1128/JB.06040-11</identifier><identifier>PMID: 22139506</identifier><identifier>CODEN: JOBAAY</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Bacteriology ; Biological and medical sciences ; carbon monoxide ; Carbon Monoxide - metabolism ; energy conservation ; Formates - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Knockout Techniques ; genes ; Genome, Archaeal ; Genomes ; Genotype & phenotype ; Metabolic Networks and Pathways - genetics ; Metabolism ; Methane - metabolism ; methane production ; methanogens ; Methanosarcina ; Methanosarcina - genetics ; Methanosarcina - growth & development ; Methanosarcina - metabolism ; Microbiology ; Microorganisms ; Miscellaneous ; Models, Biological ; Oxidoreductases - metabolism ; Phenotype ; prediction ; Thermodynamics</subject><ispartof>Journal of Bacteriology, 2012-02, Vol.194 (4), p.855-865</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Feb 2012</rights><rights>Copyright © 2012, American Society for Microbiology. All Rights Reserved. 2012 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</citedby><cites>FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272958/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272958/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25505667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22139506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedict, Matthew N</creatorcontrib><creatorcontrib>Gonnerman, Matthew C</creatorcontrib><creatorcontrib>Metcalf, William W</creatorcontrib><creatorcontrib>Price, Nathan D</creatorcontrib><title>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</title><title>Journal of Bacteriology</title><addtitle>J Bacteriol</addtitle><description>Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.</description><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>carbon monoxide</subject><subject>Carbon Monoxide - metabolism</subject><subject>energy conservation</subject><subject>Formates - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Knockout Techniques</subject><subject>genes</subject><subject>Genome, Archaeal</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Methane - metabolism</subject><subject>methane production</subject><subject>methanogens</subject><subject>Methanosarcina</subject><subject>Methanosarcina - genetics</subject><subject>Methanosarcina - growth & development</subject><subject>Methanosarcina - metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Oxidoreductases - metabolism</subject><subject>Phenotype</subject><subject>prediction</subject><subject>Thermodynamics</subject><issn>0021-9193</issn><issn>1098-5530</issn><issn>1067-8832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkkFvEzEQhS0EoiFw4g4rJE5oy4x3vfFekNIIWqoiJNqerbHXm3WU2MHeFPrvcUgocLAsj7_3PPYzYy8RThG5fH95dgoN1FAiPmIThFaWQlTwmE0AOJYtttUJe5bSCgDrWvCn7IRzrFoBzYT9PLc-bGx5bWhtiy92JB3WzhTfrAk-jXFnRhd8Qb4rLu63YRxscqm4sWl0flk4X-TKXjaQD0vrs3IezUA2a47VRNE4TwUZO7q7EMmnYsHnz9mTntbJvjjOU3b76ePN4qK8-nr-eTG_Ko3gciy1FYS9tl0NHedW1lR1le5nAmpsJddNazvQuu4JkaSWnel534DtsJMzIl1N2YeD73anN7Yz1o-R1mob3YbivQrk1P873g1qGe5UxWe8FTIbvDkaxPB9ly-uVmEXfe5ZtRyxaREgQ-8OkIkhpWj7hwMQ1D4ldXmmfqeUV5l-9W9PD-yfWDLw9ghQysH0-dGMS385IUA0zSxzxYEb3HL44aJVlDZqpRW2taqVzP9gyl4fkJ6ComXMNrfXHFDAfnAJ1S-fE7D0</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Benedict, Matthew N</creator><creator>Gonnerman, Matthew C</creator><creator>Metcalf, William W</creator><creator>Price, Nathan D</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</title><author>Benedict, Matthew N ; Gonnerman, Matthew C ; Metcalf, William W ; Price, Nathan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>carbon monoxide</topic><topic>Carbon Monoxide - metabolism</topic><topic>energy conservation</topic><topic>Formates - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Knockout Techniques</topic><topic>genes</topic><topic>Genome, Archaeal</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Methane - metabolism</topic><topic>methane production</topic><topic>methanogens</topic><topic>Methanosarcina</topic><topic>Methanosarcina - genetics</topic><topic>Methanosarcina - growth & development</topic><topic>Methanosarcina - metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Oxidoreductases - metabolism</topic><topic>Phenotype</topic><topic>prediction</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedict, Matthew N</creatorcontrib><creatorcontrib>Gonnerman, Matthew C</creatorcontrib><creatorcontrib>Metcalf, William W</creatorcontrib><creatorcontrib>Price, Nathan D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedict, Matthew N</au><au>Gonnerman, Matthew C</au><au>Metcalf, William W</au><au>Price, Nathan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</atitle><jtitle>Journal of Bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>194</volume><issue>4</issue><spage>855</spage><epage>865</epage><pages>855-865</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><eissn>1067-8832</eissn><coden>JOBAAY</coden><abstract>Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>22139506</pmid><doi>10.1128/JB.06040-11</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9193 |
ispartof | Journal of Bacteriology, 2012-02, Vol.194 (4), p.855-865 |
issn | 0021-9193 1098-5530 1067-8832 |
language | eng |
recordid | cdi_proquest_journals_921169100 |
source | American Society for Microbiology; PubMed Central |
subjects | Bacteriology Biological and medical sciences carbon monoxide Carbon Monoxide - metabolism energy conservation Formates - metabolism Fundamental and applied biological sciences. Psychology Gene Knockout Techniques genes Genome, Archaeal Genomes Genotype & phenotype Metabolic Networks and Pathways - genetics Metabolism Methane - metabolism methane production methanogens Methanosarcina Methanosarcina - genetics Methanosarcina - growth & development Methanosarcina - metabolism Microbiology Microorganisms Miscellaneous Models, Biological Oxidoreductases - metabolism Phenotype prediction Thermodynamics |
title | Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Scale%20Metabolic%20Reconstruction%20and%20Hypothesis%20Testing%20in%20the%20Methanogenic%20Archaeon%20Methanosarcina%20acetivorans%20C2A&rft.jtitle=Journal%20of%20Bacteriology&rft.au=Benedict,%20Matthew%20N&rft.date=2012-02-01&rft.volume=194&rft.issue=4&rft.spage=855&rft.epage=865&rft.pages=855-865&rft.issn=0021-9193&rft.eissn=1098-5530&rft.coden=JOBAAY&rft_id=info:doi/10.1128/JB.06040-11&rft_dat=%3Cproquest_pubme%3E2584575621%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921169100&rft_id=info:pmid/22139506&rfr_iscdi=true |