Loading…

Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A

Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Bacteriology 2012-02, Vol.194 (4), p.855-865
Main Authors: Benedict, Matthew N, Gonnerman, Matthew C, Metcalf, William W, Price, Nathan D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3
cites cdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3
container_end_page 865
container_issue 4
container_start_page 855
container_title Journal of Bacteriology
container_volume 194
creator Benedict, Matthew N
Gonnerman, Matthew C
Metcalf, William W
Price, Nathan D
description Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.
doi_str_mv 10.1128/JB.06040-11
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_921169100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584575621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</originalsourceid><addsrcrecordid>eNpVkkFvEzEQhS0EoiFw4g4rJE5oy4x3vfFekNIIWqoiJNqerbHXm3WU2MHeFPrvcUgocLAsj7_3PPYzYy8RThG5fH95dgoN1FAiPmIThFaWQlTwmE0AOJYtttUJe5bSCgDrWvCn7IRzrFoBzYT9PLc-bGx5bWhtiy92JB3WzhTfrAk-jXFnRhd8Qb4rLu63YRxscqm4sWl0flk4X-TKXjaQD0vrs3IezUA2a47VRNE4TwUZO7q7EMmnYsHnz9mTntbJvjjOU3b76ePN4qK8-nr-eTG_Ko3gciy1FYS9tl0NHedW1lR1le5nAmpsJddNazvQuu4JkaSWnel534DtsJMzIl1N2YeD73anN7Yz1o-R1mob3YbivQrk1P873g1qGe5UxWe8FTIbvDkaxPB9ly-uVmEXfe5ZtRyxaREgQ-8OkIkhpWj7hwMQ1D4ldXmmfqeUV5l-9W9PD-yfWDLw9ghQysH0-dGMS385IUA0zSxzxYEb3HL44aJVlDZqpRW2taqVzP9gyl4fkJ6ComXMNrfXHFDAfnAJ1S-fE7D0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921169100</pqid></control><display><type>article</type><title>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</title><source>American Society for Microbiology</source><source>PubMed Central</source><creator>Benedict, Matthew N ; Gonnerman, Matthew C ; Metcalf, William W ; Price, Nathan D</creator><creatorcontrib>Benedict, Matthew N ; Gonnerman, Matthew C ; Metcalf, William W ; Price, Nathan D</creatorcontrib><description>Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>EISSN: 1067-8832</identifier><identifier>DOI: 10.1128/JB.06040-11</identifier><identifier>PMID: 22139506</identifier><identifier>CODEN: JOBAAY</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Bacteriology ; Biological and medical sciences ; carbon monoxide ; Carbon Monoxide - metabolism ; energy conservation ; Formates - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Knockout Techniques ; genes ; Genome, Archaeal ; Genomes ; Genotype &amp; phenotype ; Metabolic Networks and Pathways - genetics ; Metabolism ; Methane - metabolism ; methane production ; methanogens ; Methanosarcina ; Methanosarcina - genetics ; Methanosarcina - growth &amp; development ; Methanosarcina - metabolism ; Microbiology ; Microorganisms ; Miscellaneous ; Models, Biological ; Oxidoreductases - metabolism ; Phenotype ; prediction ; Thermodynamics</subject><ispartof>Journal of Bacteriology, 2012-02, Vol.194 (4), p.855-865</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Feb 2012</rights><rights>Copyright © 2012, American Society for Microbiology. All Rights Reserved. 2012 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</citedby><cites>FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272958/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272958/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25505667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22139506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedict, Matthew N</creatorcontrib><creatorcontrib>Gonnerman, Matthew C</creatorcontrib><creatorcontrib>Metcalf, William W</creatorcontrib><creatorcontrib>Price, Nathan D</creatorcontrib><title>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</title><title>Journal of Bacteriology</title><addtitle>J Bacteriol</addtitle><description>Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.</description><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>carbon monoxide</subject><subject>Carbon Monoxide - metabolism</subject><subject>energy conservation</subject><subject>Formates - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Knockout Techniques</subject><subject>genes</subject><subject>Genome, Archaeal</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Methane - metabolism</subject><subject>methane production</subject><subject>methanogens</subject><subject>Methanosarcina</subject><subject>Methanosarcina - genetics</subject><subject>Methanosarcina - growth &amp; development</subject><subject>Methanosarcina - metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Oxidoreductases - metabolism</subject><subject>Phenotype</subject><subject>prediction</subject><subject>Thermodynamics</subject><issn>0021-9193</issn><issn>1098-5530</issn><issn>1067-8832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkkFvEzEQhS0EoiFw4g4rJE5oy4x3vfFekNIIWqoiJNqerbHXm3WU2MHeFPrvcUgocLAsj7_3PPYzYy8RThG5fH95dgoN1FAiPmIThFaWQlTwmE0AOJYtttUJe5bSCgDrWvCn7IRzrFoBzYT9PLc-bGx5bWhtiy92JB3WzhTfrAk-jXFnRhd8Qb4rLu63YRxscqm4sWl0flk4X-TKXjaQD0vrs3IezUA2a47VRNE4TwUZO7q7EMmnYsHnz9mTntbJvjjOU3b76ePN4qK8-nr-eTG_Ko3gciy1FYS9tl0NHedW1lR1le5nAmpsJddNazvQuu4JkaSWnel534DtsJMzIl1N2YeD73anN7Yz1o-R1mob3YbivQrk1P873g1qGe5UxWe8FTIbvDkaxPB9ly-uVmEXfe5ZtRyxaREgQ-8OkIkhpWj7hwMQ1D4ldXmmfqeUV5l-9W9PD-yfWDLw9ghQysH0-dGMS385IUA0zSxzxYEb3HL44aJVlDZqpRW2taqVzP9gyl4fkJ6ComXMNrfXHFDAfnAJ1S-fE7D0</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Benedict, Matthew N</creator><creator>Gonnerman, Matthew C</creator><creator>Metcalf, William W</creator><creator>Price, Nathan D</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</title><author>Benedict, Matthew N ; Gonnerman, Matthew C ; Metcalf, William W ; Price, Nathan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>carbon monoxide</topic><topic>Carbon Monoxide - metabolism</topic><topic>energy conservation</topic><topic>Formates - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Knockout Techniques</topic><topic>genes</topic><topic>Genome, Archaeal</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Methane - metabolism</topic><topic>methane production</topic><topic>methanogens</topic><topic>Methanosarcina</topic><topic>Methanosarcina - genetics</topic><topic>Methanosarcina - growth &amp; development</topic><topic>Methanosarcina - metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Oxidoreductases - metabolism</topic><topic>Phenotype</topic><topic>prediction</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedict, Matthew N</creatorcontrib><creatorcontrib>Gonnerman, Matthew C</creatorcontrib><creatorcontrib>Metcalf, William W</creatorcontrib><creatorcontrib>Price, Nathan D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedict, Matthew N</au><au>Gonnerman, Matthew C</au><au>Metcalf, William W</au><au>Price, Nathan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A</atitle><jtitle>Journal of Bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>194</volume><issue>4</issue><spage>855</spage><epage>865</epage><pages>855-865</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><eissn>1067-8832</eissn><coden>JOBAAY</coden><abstract>Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predicted protein-coding genes (16%) in the M. acetivorans genome. The reconstruction effort has identified key knowledge gaps and differences in peripheral and central metabolism between methanogenic species. Using flux balance analysis, the model quantitatively predicts wild-type phenotypes and is 96% accurate in knockout lethality predictions compared to currently available experimental data. The model was used to probe the mechanisms and energetics of by-product formation and growth on carbon monoxide, as well as the nature of the reaction catalyzed by the soluble heterodisulfide reductase HdrABC in M. acetivorans. The genome-scale model provides quantitative and qualitative hypotheses that can be used to help iteratively guide additional experiments to further the state of knowledge about methanogenesis.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>22139506</pmid><doi>10.1128/JB.06040-11</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9193
ispartof Journal of Bacteriology, 2012-02, Vol.194 (4), p.855-865
issn 0021-9193
1098-5530
1067-8832
language eng
recordid cdi_proquest_journals_921169100
source American Society for Microbiology; PubMed Central
subjects Bacteriology
Biological and medical sciences
carbon monoxide
Carbon Monoxide - metabolism
energy conservation
Formates - metabolism
Fundamental and applied biological sciences. Psychology
Gene Knockout Techniques
genes
Genome, Archaeal
Genomes
Genotype & phenotype
Metabolic Networks and Pathways - genetics
Metabolism
Methane - metabolism
methane production
methanogens
Methanosarcina
Methanosarcina - genetics
Methanosarcina - growth & development
Methanosarcina - metabolism
Microbiology
Microorganisms
Miscellaneous
Models, Biological
Oxidoreductases - metabolism
Phenotype
prediction
Thermodynamics
title Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Scale%20Metabolic%20Reconstruction%20and%20Hypothesis%20Testing%20in%20the%20Methanogenic%20Archaeon%20Methanosarcina%20acetivorans%20C2A&rft.jtitle=Journal%20of%20Bacteriology&rft.au=Benedict,%20Matthew%20N&rft.date=2012-02-01&rft.volume=194&rft.issue=4&rft.spage=855&rft.epage=865&rft.pages=855-865&rft.issn=0021-9193&rft.eissn=1098-5530&rft.coden=JOBAAY&rft_id=info:doi/10.1128/JB.06040-11&rft_dat=%3Cproquest_pubme%3E2584575621%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-be5a1fbed40d22e84a3d3bf75041982b69ed0bb4fa11a8b8dcf2f60ed1d87aab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921169100&rft_id=info:pmid/22139506&rfr_iscdi=true