Loading…

Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media

The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on scientific computing 2002-01, Vol.24 (2), p.684-701
Main Authors: Kim, Seongjai, Kim, Soohyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3
cites cdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3
container_end_page 701
container_issue 2
container_start_page 684
container_title SIAM journal on scientific computing
container_volume 24
creator Kim, Seongjai
Kim, Soohyun
description The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.
doi_str_mv 10.1137/S1064827501385426
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921281864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585176241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</originalsourceid><addsrcrecordid>eNplUMlOwzAQtRBIlMIHcLOQOAbGSxzniCo2qYgDcI7cZNy4cuJiJ4fy9aRqJQ6cZjRvmadHyDWDO8ZEcf_BQEnNixyY0Lnk6oTMGJR5VrCyON3vSmZ7_JxcpLQBYEqWfEbM2-gHt46uocl1ozeDCz21IdLWrdvMRvwesa93NAU_7rFEg6VDi7RF37XBDz90G8PKY0ddPx0HjGGNPYYx0Q4bZy7JmTU-4dVxzsnX0-Pn4iVbvj-_Lh6WWS0AhowVynJpQBnDhdSohdZomMK6BiixRIvWrExulSqk1dYasHkuUUHDAXkj5uTm4DvFmTKnodqEMfbTy6rkjGumlZxI7ECqY0gpoq220XUm7ioG1b7I6l-Rk-b2aGxSbbyNpq9d-hNKJYCVTPwCQ410xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921281864</pqid></control><display><type>article</type><title>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</title><source>SIAM Journals Archive</source><source>ABI/INFORM global</source><creator>Kim, Seongjai ; Kim, Soohyun</creator><creatorcontrib>Kim, Seongjai ; Kim, Soohyun</creatorcontrib><description>The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827501385426</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Acoustics ; Algorithms ; Applied mathematics ; Decomposition ; Exact sciences and technology ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Scholarships &amp; fellowships ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2002-01, Vol.24 (2), p.684-701</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</citedby><cites>FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/921281864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14630191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Seongjai</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><title>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</title><title>SIAM journal on scientific computing</title><description>The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Scholarships &amp; fellowships</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplUMlOwzAQtRBIlMIHcLOQOAbGSxzniCo2qYgDcI7cZNy4cuJiJ4fy9aRqJQ6cZjRvmadHyDWDO8ZEcf_BQEnNixyY0Lnk6oTMGJR5VrCyON3vSmZ7_JxcpLQBYEqWfEbM2-gHt46uocl1ozeDCz21IdLWrdvMRvwesa93NAU_7rFEg6VDi7RF37XBDz90G8PKY0ddPx0HjGGNPYYx0Q4bZy7JmTU-4dVxzsnX0-Pn4iVbvj-_Lh6WWS0AhowVynJpQBnDhdSohdZomMK6BiixRIvWrExulSqk1dYasHkuUUHDAXkj5uTm4DvFmTKnodqEMfbTy6rkjGumlZxI7ECqY0gpoq220XUm7ioG1b7I6l-Rk-b2aGxSbbyNpq9d-hNKJYCVTPwCQ410xA</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Kim, Seongjai</creator><creator>Kim, Soohyun</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20020101</creationdate><title>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</title><author>Kim, Seongjai ; Kim, Soohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Scholarships &amp; fellowships</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seongjai</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seongjai</au><au>Kim, Soohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>2</issue><spage>684</spage><epage>701</epage><pages>684-701</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827501385426</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2002-01, Vol.24 (2), p.684-701
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921281864
source SIAM Journals Archive; ABI/INFORM global
subjects Accuracy
Acoustics
Algorithms
Applied mathematics
Decomposition
Exact sciences and technology
Mathematics
Methods
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations, boundary value problems
Scholarships & fellowships
Sciences and techniques of general use
title Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20simulation%20for%20high-frequency%20solutions%20of%20the%20helmholtz%20problem%20in%20heterogeneous%20media&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Kim,%20Seongjai&rft.date=2002-01-01&rft.volume=24&rft.issue=2&rft.spage=684&rft.epage=701&rft.pages=684-701&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827501385426&rft_dat=%3Cproquest_cross%3E2585176241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921281864&rft_id=info:pmid/&rfr_iscdi=true