Loading…
Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media
The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need...
Saved in:
Published in: | SIAM journal on scientific computing 2002-01, Vol.24 (2), p.684-701 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3 |
container_end_page | 701 |
container_issue | 2 |
container_start_page | 684 |
container_title | SIAM journal on scientific computing |
container_volume | 24 |
creator | Kim, Seongjai Kim, Soohyun |
description | The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem. |
doi_str_mv | 10.1137/S1064827501385426 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921281864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585176241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</originalsourceid><addsrcrecordid>eNplUMlOwzAQtRBIlMIHcLOQOAbGSxzniCo2qYgDcI7cZNy4cuJiJ4fy9aRqJQ6cZjRvmadHyDWDO8ZEcf_BQEnNixyY0Lnk6oTMGJR5VrCyON3vSmZ7_JxcpLQBYEqWfEbM2-gHt46uocl1ozeDCz21IdLWrdvMRvwesa93NAU_7rFEg6VDi7RF37XBDz90G8PKY0ddPx0HjGGNPYYx0Q4bZy7JmTU-4dVxzsnX0-Pn4iVbvj-_Lh6WWS0AhowVynJpQBnDhdSohdZomMK6BiixRIvWrExulSqk1dYasHkuUUHDAXkj5uTm4DvFmTKnodqEMfbTy6rkjGumlZxI7ECqY0gpoq220XUm7ioG1b7I6l-Rk-b2aGxSbbyNpq9d-hNKJYCVTPwCQ410xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921281864</pqid></control><display><type>article</type><title>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</title><source>SIAM Journals Archive</source><source>ABI/INFORM global</source><creator>Kim, Seongjai ; Kim, Soohyun</creator><creatorcontrib>Kim, Seongjai ; Kim, Soohyun</creatorcontrib><description>The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827501385426</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Acoustics ; Algorithms ; Applied mathematics ; Decomposition ; Exact sciences and technology ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Scholarships & fellowships ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2002-01, Vol.24 (2), p.684-701</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</citedby><cites>FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/921281864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14630191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Seongjai</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><title>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</title><title>SIAM journal on scientific computing</title><description>The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Scholarships & fellowships</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplUMlOwzAQtRBIlMIHcLOQOAbGSxzniCo2qYgDcI7cZNy4cuJiJ4fy9aRqJQ6cZjRvmadHyDWDO8ZEcf_BQEnNixyY0Lnk6oTMGJR5VrCyON3vSmZ7_JxcpLQBYEqWfEbM2-gHt46uocl1ozeDCz21IdLWrdvMRvwesa93NAU_7rFEg6VDi7RF37XBDz90G8PKY0ddPx0HjGGNPYYx0Q4bZy7JmTU-4dVxzsnX0-Pn4iVbvj-_Lh6WWS0AhowVynJpQBnDhdSohdZomMK6BiixRIvWrExulSqk1dYasHkuUUHDAXkj5uTm4DvFmTKnodqEMfbTy6rkjGumlZxI7ECqY0gpoq220XUm7ioG1b7I6l-Rk-b2aGxSbbyNpq9d-hNKJYCVTPwCQ410xA</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Kim, Seongjai</creator><creator>Kim, Soohyun</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20020101</creationdate><title>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</title><author>Kim, Seongjai ; Kim, Soohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Scholarships & fellowships</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seongjai</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seongjai</au><au>Kim, Soohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>2</issue><spage>684</spage><epage>701</epage><pages>684-701</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>The Helmholtz problem is hard to solve in heterogeneous media, in particular, when the wave number is real and large. The problem is neither coercive nor Hermitian symmetric. This article concerns the V-cycle multigrid (MG) method for high-frequency solutions of the Helmholtz problem. Since we need to choose at least 10--12 grid points per wavelength for stability, the coarse grid problem is still large. To solve the coarse grid problem efficiently, a nonoverlapping domain decomposition method is adopted without introducing another coarser subspace correction. Various numerical experiments have shown that the convergence rate of the resulting MG method is independent on the grid size and the wave number, provided that the coarse grid problem is fine enough for the solution to capture characteristics of the physical problem.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827501385426</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2002-01, Vol.24 (2), p.684-701 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921281864 |
source | SIAM Journals Archive; ABI/INFORM global |
subjects | Accuracy Acoustics Algorithms Applied mathematics Decomposition Exact sciences and technology Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations, boundary value problems Scholarships & fellowships Sciences and techniques of general use |
title | Multigrid simulation for high-frequency solutions of the helmholtz problem in heterogeneous media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20simulation%20for%20high-frequency%20solutions%20of%20the%20helmholtz%20problem%20in%20heterogeneous%20media&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Kim,%20Seongjai&rft.date=2002-01-01&rft.volume=24&rft.issue=2&rft.spage=684&rft.epage=701&rft.pages=684-701&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827501385426&rft_dat=%3Cproquest_cross%3E2585176241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-176f24a06aa2348e8388ea16ecc009e9efefaba5f6674f8ffa0f554e60d20e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921281864&rft_id=info:pmid/&rfr_iscdi=true |