Loading…
A fast poisson solver for the finite difference solution of the incompressible navier-stokes equations
In this paper, a fast direct solver for the Poisson equation on the half-staggered grid is presented. The Poisson equation results from the projection method of the finite difference solution of the incompressible Navier--Stokes equations. To achieve our goal, new algorithms for diagonalizing a semi...
Saved in:
Published in: | SIAM journal on scientific computing 1998-09, Vol.19 (5), p.1606-1624 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93 |
container_end_page | 1624 |
container_issue | 5 |
container_start_page | 1606 |
container_title | SIAM journal on scientific computing |
container_volume | 19 |
creator | GOLUB, G. H LAN CHIEH HUANG SIMON, H TANG, W.-P |
description | In this paper, a fast direct solver for the Poisson equation on the half-staggered grid is presented. The Poisson equation results from the projection method of the finite difference solution of the incompressible Navier--Stokes equations. To achieve our goal, new algorithms for diagonalizing a semidefinite pair are developed. The fast solver can also be extended to the three-dimensional case. The motivation and related issues in using this half-staggered grid are also discussed. |
doi_str_mv | 10.1137/S1064827595285299 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921456179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586599691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93</originalsourceid><addsrcrecordid>eNplkEtPwzAQhC0EEqXwA7hZiGvAdhI_jlXFS6rEAThHjrMWLmncepNK_HsSWokDp11pv5kdDSHXnN1xnqv7N85koYUqTSl0KYw5ITPOTJkpbtTptMsim-7n5AJxzRiXhREz4hfUW-zpNgbE2FGM7R4S9THR_hOoD13ogTbBe0jQOZiAoQ8jGf0vEToXN9sEiKFugXZ2HyBl2McvQAq7wU4wXpIzb1uEq-Ock4_Hh_flc7Z6fXpZLlaZGyP3WeM4SGhs7bxljnte2to7K3JtPQPZaMtBa8WUkODqhkkQWhdFXqtcKlabfE5uDr7bFHcDYF-t45C68WVlBC9KydUE8QPkUkRM4KttChubvivOqqnN6l-bo-b2aGzR2dYn27mAf8LRlpV5_gOCs3ak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921456179</pqid></control><display><type>article</type><title>A fast poisson solver for the finite difference solution of the incompressible navier-stokes equations</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>GOLUB, G. H ; LAN CHIEH HUANG ; SIMON, H ; TANG, W.-P</creator><creatorcontrib>GOLUB, G. H ; LAN CHIEH HUANG ; SIMON, H ; TANG, W.-P</creatorcontrib><description>In this paper, a fast direct solver for the Poisson equation on the half-staggered grid is presented. The Poisson equation results from the projection method of the finite difference solution of the incompressible Navier--Stokes equations. To achieve our goal, new algorithms for diagonalizing a semidefinite pair are developed. The fast solver can also be extended to the three-dimensional case. The motivation and related issues in using this half-staggered grid are also discussed.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827595285299</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Computational mathematics ; Computer science ; Exact sciences and technology ; Fluid mechanics: general mathematical aspects ; Laboratories ; Mathematics ; Navier-Stokes equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Physics ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 1998-09, Vol.19 (5), p.1606-1624</ispartof><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93</citedby><cites>FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/921456179?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1793053$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLUB, G. H</creatorcontrib><creatorcontrib>LAN CHIEH HUANG</creatorcontrib><creatorcontrib>SIMON, H</creatorcontrib><creatorcontrib>TANG, W.-P</creatorcontrib><title>A fast poisson solver for the finite difference solution of the incompressible navier-stokes equations</title><title>SIAM journal on scientific computing</title><description>In this paper, a fast direct solver for the Poisson equation on the half-staggered grid is presented. The Poisson equation results from the projection method of the finite difference solution of the incompressible Navier--Stokes equations. To achieve our goal, new algorithms for diagonalizing a semidefinite pair are developed. The fast solver can also be extended to the three-dimensional case. The motivation and related issues in using this half-staggered grid are also discussed.</description><subject>Approximation</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Computational mathematics</subject><subject>Computer science</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics: general mathematical aspects</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkEtPwzAQhC0EEqXwA7hZiGvAdhI_jlXFS6rEAThHjrMWLmncepNK_HsSWokDp11pv5kdDSHXnN1xnqv7N85koYUqTSl0KYw5ITPOTJkpbtTptMsim-7n5AJxzRiXhREz4hfUW-zpNgbE2FGM7R4S9THR_hOoD13ogTbBe0jQOZiAoQ8jGf0vEToXN9sEiKFugXZ2HyBl2McvQAq7wU4wXpIzb1uEq-Ock4_Hh_flc7Z6fXpZLlaZGyP3WeM4SGhs7bxljnte2to7K3JtPQPZaMtBa8WUkODqhkkQWhdFXqtcKlabfE5uDr7bFHcDYF-t45C68WVlBC9KydUE8QPkUkRM4KttChubvivOqqnN6l-bo-b2aGzR2dYn27mAf8LRlpV5_gOCs3ak</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>GOLUB, G. H</creator><creator>LAN CHIEH HUANG</creator><creator>SIMON, H</creator><creator>TANG, W.-P</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19980901</creationdate><title>A fast poisson solver for the finite difference solution of the incompressible navier-stokes equations</title><author>GOLUB, G. H ; LAN CHIEH HUANG ; SIMON, H ; TANG, W.-P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Approximation</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Computational mathematics</topic><topic>Computer science</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics: general mathematical aspects</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLUB, G. H</creatorcontrib><creatorcontrib>LAN CHIEH HUANG</creatorcontrib><creatorcontrib>SIMON, H</creatorcontrib><creatorcontrib>TANG, W.-P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest)</collection><collection>Proquest Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLUB, G. H</au><au>LAN CHIEH HUANG</au><au>SIMON, H</au><au>TANG, W.-P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast poisson solver for the finite difference solution of the incompressible navier-stokes equations</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>1998-09-01</date><risdate>1998</risdate><volume>19</volume><issue>5</issue><spage>1606</spage><epage>1624</epage><pages>1606-1624</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>In this paper, a fast direct solver for the Poisson equation on the half-staggered grid is presented. The Poisson equation results from the projection method of the finite difference solution of the incompressible Navier--Stokes equations. To achieve our goal, new algorithms for diagonalizing a semidefinite pair are developed. The fast solver can also be extended to the three-dimensional case. The motivation and related issues in using this half-staggered grid are also discussed.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827595285299</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 1998-09, Vol.19 (5), p.1606-1624 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921456179 |
source | ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Classical and quantum physics: mechanics and fields Classical mechanics of continuous media: general mathematical aspects Computational mathematics Computer science Exact sciences and technology Fluid mechanics: general mathematical aspects Laboratories Mathematics Navier-Stokes equations Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations, initial value problems and time-dependant initial-boundary value problems Physics Sciences and techniques of general use |
title | A fast poisson solver for the finite difference solution of the incompressible navier-stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20poisson%20solver%20for%20the%20finite%20difference%20solution%20of%20the%20incompressible%20navier-stokes%20equations&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=GOLUB,%20G.%20H&rft.date=1998-09-01&rft.volume=19&rft.issue=5&rft.spage=1606&rft.epage=1624&rft.pages=1606-1624&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827595285299&rft_dat=%3Cproquest_cross%3E2586599691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-dc1e6edabcfa0c1f15abfca238af0e6d8a1e8870726ecbd06e288443b73670b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921456179&rft_id=info:pmid/&rfr_iscdi=true |