Loading…

Multiobjective identification of Takagi-Sugeno fuzzy models

The problem of identifying the parameters of the constituent local linear models of Takagi-Sugeno fuzzy models is considered. In order to address the tradeoff between global model accuracy and interpretability of the local models as linearizations of a nonlinear system, two multiobjective identifica...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2003-12, Vol.11 (6), p.847-860
Main Authors: Johansen, T.A., Babuska, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of identifying the parameters of the constituent local linear models of Takagi-Sugeno fuzzy models is considered. In order to address the tradeoff between global model accuracy and interpretability of the local models as linearizations of a nonlinear system, two multiobjective identification algorithms are studied. Particular attention is paid to the analysis of conflicts between objectives, and we show that such information can be easily computed from the solution of the multiobjective optimization. This information is useful to diagnose the model and tune the weighting/priorities of the multiobjective optimization. Moreover, the result of the conflict analysis can be used as a constructive tool to modify the fuzzy model structure (including membership functions) in order to meet the multiple objectives. Simple illustrative examples as well as experimental results show the usefulness of the method.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2003.819824