Loading…
The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem : a study of the boundary error
The conventional method of imposing time-dependent boundary conditions for Runge-Kutta time advancement reduces the formal accuracy of the space-time method to first-order locally, and second-order globally, independently of the spatial operator. This counterintuitive result is analyzed in this pape...
Saved in:
Published in: | SIAM journal on scientific computing 1995-11, Vol.16 (6), p.1241-1252 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703 |
---|---|
cites | cdi_FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703 |
container_end_page | 1252 |
container_issue | 6 |
container_start_page | 1241 |
container_title | SIAM journal on scientific computing |
container_volume | 16 |
creator | CARPENTER, M. H GOTTLIEB, D ABARBANEL, S WAI-SUN DON |
description | The conventional method of imposing time-dependent boundary conditions for Runge-Kutta time advancement reduces the formal accuracy of the space-time method to first-order locally, and second-order globally, independently of the spatial operator. This counterintuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case. 1. Impose the exact boundary condition only at the end of the complete Runge-Kutta cycle. 2. Impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the Runge-Kutta accuracy in all cases, results in a scheme with a much reduced CFL condition, rendering the Runge-Kuua scheme less attractive. The second method retains the same allowable time step as the periodic problem. However, it is a general remedy only for the linear case. For nonlinear hyperbolic equations the second method is effective only for Runge-Kutta schemes of third-order accuracy or less. Numerical studies are presented to verify the efficacy of each approach. |
doi_str_mv | 10.1137/0916072 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921563446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587139091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703</originalsourceid><addsrcrecordid>eNo90MtKAzEUBuBBFKxVfIUggqvR3GaSuJPiDQuC1PWQySQ2ZTqpuQh164ub0dJVzuI7fw5_UZwjeI0QYTdQoBoyfFBMEBRVyZBgh-Nc05JjVh0XJyGsIEQ1FXhS_CyWGsSldl5Hq2QPpFLJS7UFzoC3NHzo8iXFKEG0aw06G9QIv2W0bgjAOD8uAzvYaPNy69LQSb8FX7JPGmy8a3u9BrdAghBT9xc6-r3T3jt_WhwZ2Qd9tnunxfvD_WL2VM5fH59nd_NSYYRiSTTucGdILbghUitMuDYVoURgo5FhQtSGt4Izo4gytO2yhIRDTSlWFYNkWlz85-a7PpMOsVm55If8ZSMwqmpCaZ3R1T9S3oXgtWk23q7zrQ2CzVhwsys4y8tdnAy5OePloGzYc8y5EIyQX7dXew8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921563446</pqid></control><display><type>article</type><title>The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem : a study of the boundary error</title><source>ABI/INFORM Global</source><source>SIAM_工业和应用数学学会过刊</source><creator>CARPENTER, M. H ; GOTTLIEB, D ; ABARBANEL, S ; WAI-SUN DON</creator><creatorcontrib>CARPENTER, M. H ; GOTTLIEB, D ; ABARBANEL, S ; WAI-SUN DON</creatorcontrib><description>The conventional method of imposing time-dependent boundary conditions for Runge-Kutta time advancement reduces the formal accuracy of the space-time method to first-order locally, and second-order globally, independently of the spatial operator. This counterintuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case. 1. Impose the exact boundary condition only at the end of the complete Runge-Kutta cycle. 2. Impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the Runge-Kutta accuracy in all cases, results in a scheme with a much reduced CFL condition, rendering the Runge-Kuua scheme less attractive. The second method retains the same allowable time step as the periodic problem. However, it is a general remedy only for the linear case. For nonlinear hyperbolic equations the second method is effective only for Runge-Kutta schemes of third-order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0916072</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Algorithms ; Applied mathematics ; Approximation ; Boundary conditions ; Boundary value problems ; Exact sciences and technology ; Mathematics ; Multiplication & division ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 1995-11, Vol.16 (6), p.1241-1252</ispartof><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1995 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703</citedby><cites>FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/921563446?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3176,11679,27915,27916,36051,44354</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2889973$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CARPENTER, M. H</creatorcontrib><creatorcontrib>GOTTLIEB, D</creatorcontrib><creatorcontrib>ABARBANEL, S</creatorcontrib><creatorcontrib>WAI-SUN DON</creatorcontrib><title>The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem : a study of the boundary error</title><title>SIAM journal on scientific computing</title><description>The conventional method of imposing time-dependent boundary conditions for Runge-Kutta time advancement reduces the formal accuracy of the space-time method to first-order locally, and second-order globally, independently of the spatial operator. This counterintuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case. 1. Impose the exact boundary condition only at the end of the complete Runge-Kutta cycle. 2. Impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the Runge-Kutta accuracy in all cases, results in a scheme with a much reduced CFL condition, rendering the Runge-Kuua scheme less attractive. The second method retains the same allowable time step as the periodic problem. However, it is a general remedy only for the linear case. For nonlinear hyperbolic equations the second method is effective only for Runge-Kutta schemes of third-order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Multiplication & division</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90MtKAzEUBuBBFKxVfIUggqvR3GaSuJPiDQuC1PWQySQ2ZTqpuQh164ub0dJVzuI7fw5_UZwjeI0QYTdQoBoyfFBMEBRVyZBgh-Nc05JjVh0XJyGsIEQ1FXhS_CyWGsSldl5Hq2QPpFLJS7UFzoC3NHzo8iXFKEG0aw06G9QIv2W0bgjAOD8uAzvYaPNy69LQSb8FX7JPGmy8a3u9BrdAghBT9xc6-r3T3jt_WhwZ2Qd9tnunxfvD_WL2VM5fH59nd_NSYYRiSTTucGdILbghUitMuDYVoURgo5FhQtSGt4Izo4gytO2yhIRDTSlWFYNkWlz85-a7PpMOsVm55If8ZSMwqmpCaZ3R1T9S3oXgtWk23q7zrQ2CzVhwsys4y8tdnAy5OePloGzYc8y5EIyQX7dXew8</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>CARPENTER, M. H</creator><creator>GOTTLIEB, D</creator><creator>ABARBANEL, S</creator><creator>WAI-SUN DON</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19951101</creationdate><title>The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem : a study of the boundary error</title><author>CARPENTER, M. H ; GOTTLIEB, D ; ABARBANEL, S ; WAI-SUN DON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Multiplication & division</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARPENTER, M. H</creatorcontrib><creatorcontrib>GOTTLIEB, D</creatorcontrib><creatorcontrib>ABARBANEL, S</creatorcontrib><creatorcontrib>WAI-SUN DON</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARPENTER, M. H</au><au>GOTTLIEB, D</au><au>ABARBANEL, S</au><au>WAI-SUN DON</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem : a study of the boundary error</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>1995-11-01</date><risdate>1995</risdate><volume>16</volume><issue>6</issue><spage>1241</spage><epage>1252</epage><pages>1241-1252</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>The conventional method of imposing time-dependent boundary conditions for Runge-Kutta time advancement reduces the formal accuracy of the space-time method to first-order locally, and second-order globally, independently of the spatial operator. This counterintuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case. 1. Impose the exact boundary condition only at the end of the complete Runge-Kutta cycle. 2. Impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the Runge-Kutta accuracy in all cases, results in a scheme with a much reduced CFL condition, rendering the Runge-Kuua scheme less attractive. The second method retains the same allowable time step as the periodic problem. However, it is a general remedy only for the linear case. For nonlinear hyperbolic equations the second method is effective only for Runge-Kutta schemes of third-order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0916072</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 1995-11, Vol.16 (6), p.1241-1252 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921563446 |
source | ABI/INFORM Global; SIAM_工业和应用数学学会过刊 |
subjects | Accuracy Algorithms Applied mathematics Approximation Boundary conditions Boundary value problems Exact sciences and technology Mathematics Multiplication & division Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use |
title | The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem : a study of the boundary error |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20theoretical%20accuracy%20of%20Runge-Kutta%20time%20discretizations%20for%20the%20initial%20boundary%20value%20problem%20:%20a%20study%20of%20the%20boundary%20error&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=CARPENTER,%20M.%20H&rft.date=1995-11-01&rft.volume=16&rft.issue=6&rft.spage=1241&rft.epage=1252&rft.pages=1241-1252&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/0916072&rft_dat=%3Cproquest_cross%3E2587139091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c211t-3e2d2df3698f3aec238ef534392fe1f7996f8b987fc3cf4bd3690380e442c5703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921563446&rft_id=info:pmid/&rfr_iscdi=true |