Loading…

L1-Norm-Based Common Spatial Patterns

Common spatial patterns (CSP) is a commonly used method of spatial filtering for multichannel electroencephalogram (EEG) signals. The formulation of the CSP criterion is based on variance using L2-norm, which implies that CSP is sensitive to outliers. In this paper, we propose a robust version of CS...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2012-03, Vol.59 (3), p.653-662
Main Authors: Wang, Haixian, Tang, Qin, Zheng, Wenming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Common spatial patterns (CSP) is a commonly used method of spatial filtering for multichannel electroencephalogram (EEG) signals. The formulation of the CSP criterion is based on variance using L2-norm, which implies that CSP is sensitive to outliers. In this paper, we propose a robust version of CSP, called CSP-L1, by maximizing the ratio of filtered dispersion of one class to the other class, both of which are formulated by using L1-norm rather than L2-norm. The spatial filters of CSP-L1 are obtained by introducing an iterative algorithm, which is easy to implement and is theoretically justified. CSP-L1 is robust to outliers. Experiment results on a toy example and datasets of BCI competitions demonstrate the efficacy of the proposed method.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2011.2177523