Loading…

A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order

A quasilinear elliptic equation of second order can be split into a first order system in various ways. We present and analyze a stabilized finite element method for the system, which is well suited for any of these possible splittings. Under minimal assumptions on the continuous solution, existence...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2005-01, Vol.43 (3), p.949-969
Main Authors: Dobrowolski, Manfred, Villegas, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c224t-df3e61fcf02e58b2159d380666f88de46e3ea2fc3dae05b1def3c3964c0388b03
container_end_page 969
container_issue 3
container_start_page 949
container_title SIAM journal on numerical analysis
container_volume 43
creator Dobrowolski, Manfred
Villegas, Manuel
description A quasilinear elliptic equation of second order can be split into a first order system in various ways. We present and analyze a stabilized finite element method for the system, which is well suited for any of these possible splittings. Under minimal assumptions on the continuous solution, existence and (nearly) optimal convergence in $L^\infty$ of the discrete solutions is established. This result holds for any choice of the stabilization parameter $\omega>0$. Moreover, the paper presents a framework for investigating other mixed methods for unsymmetric first order systems.
doi_str_mv 10.1137/S0036142902408829
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922260045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590198891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-df3e61fcf02e58b2159d380666f88de46e3ea2fc3dae05b1def3c3964c0388b03</originalsourceid><addsrcrecordid>eNplkEFPwzAMhSMEEmPwA7hF3AtO0mbpcZo2htRph8G5ahNHZOrWkmQS49eTaty42LLfJz_rEfLI4JkxMXvZAQjJcl4Cz0EpXl6RCYOyyGZsBtdkMsrZqN-SuxD2kGbFxIRUc7qLTes694OGbtx3qit3dBHpssMDHiPdYPzsDbW9T6vODdFpujuHiIdAe5toHyLdeoP-ntzYpgv48Nen5GO1fF-ss2r7-raYV5nmPI-ZsQIls9oCx0K1nBWlEQqklFYpg7lEgQ23WpgGoWiZQSu0KGWu09OqBTElT5e7g--_Thhive9P_pgs65JzLgHyIkHsAmnfh-DR1oN3h8afawb1mFn9LzPxCzrkXcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922260045</pqid></control><display><type>article</type><title>A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR</source><creator>Dobrowolski, Manfred ; Villegas, Manuel</creator><creatorcontrib>Dobrowolski, Manfred ; Villegas, Manuel</creatorcontrib><description>A quasilinear elliptic equation of second order can be split into a first order system in various ways. We present and analyze a stabilized finite element method for the system, which is well suited for any of these possible splittings. Under minimal assumptions on the continuous solution, existence and (nearly) optimal convergence in $L^\infty$ of the discrete solutions is established. This result holds for any choice of the stabilization parameter $\omega&gt;0$. Moreover, the paper presents a framework for investigating other mixed methods for unsymmetric first order systems.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142902408829</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Finite element analysis ; Methods</subject><ispartof>SIAM journal on numerical analysis, 2005-01, Vol.43 (3), p.949-969</ispartof><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-df3e61fcf02e58b2159d380666f88de46e3ea2fc3dae05b1def3c3964c0388b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/922260045?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Dobrowolski, Manfred</creatorcontrib><creatorcontrib>Villegas, Manuel</creatorcontrib><title>A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order</title><title>SIAM journal on numerical analysis</title><description>A quasilinear elliptic equation of second order can be split into a first order system in various ways. We present and analyze a stabilized finite element method for the system, which is well suited for any of these possible splittings. Under minimal assumptions on the continuous solution, existence and (nearly) optimal convergence in $L^\infty$ of the discrete solutions is established. This result holds for any choice of the stabilization parameter $\omega&gt;0$. Moreover, the paper presents a framework for investigating other mixed methods for unsymmetric first order systems.</description><subject>Eigenvalues</subject><subject>Finite element analysis</subject><subject>Methods</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkEFPwzAMhSMEEmPwA7hF3AtO0mbpcZo2htRph8G5ahNHZOrWkmQS49eTaty42LLfJz_rEfLI4JkxMXvZAQjJcl4Cz0EpXl6RCYOyyGZsBtdkMsrZqN-SuxD2kGbFxIRUc7qLTes694OGbtx3qit3dBHpssMDHiPdYPzsDbW9T6vODdFpujuHiIdAe5toHyLdeoP-ntzYpgv48Nen5GO1fF-ss2r7-raYV5nmPI-ZsQIls9oCx0K1nBWlEQqklFYpg7lEgQ23WpgGoWiZQSu0KGWu09OqBTElT5e7g--_Thhive9P_pgs65JzLgHyIkHsAmnfh-DR1oN3h8afawb1mFn9LzPxCzrkXcc</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Dobrowolski, Manfred</creator><creator>Villegas, Manuel</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200501</creationdate><title>A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order</title><author>Dobrowolski, Manfred ; Villegas, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-df3e61fcf02e58b2159d380666f88de46e3ea2fc3dae05b1def3c3964c0388b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Eigenvalues</topic><topic>Finite element analysis</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrowolski, Manfred</creatorcontrib><creatorcontrib>Villegas, Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrowolski, Manfred</au><au>Villegas, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2005-01</date><risdate>2005</risdate><volume>43</volume><issue>3</issue><spage>949</spage><epage>969</epage><pages>949-969</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A quasilinear elliptic equation of second order can be split into a first order system in various ways. We present and analyze a stabilized finite element method for the system, which is well suited for any of these possible splittings. Under minimal assumptions on the continuous solution, existence and (nearly) optimal convergence in $L^\infty$ of the discrete solutions is established. This result holds for any choice of the stabilization parameter $\omega&gt;0$. Moreover, the paper presents a framework for investigating other mixed methods for unsymmetric first order systems.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142902408829</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2005-01, Vol.43 (3), p.949-969
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922260045
source ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive; JSTOR
subjects Eigenvalues
Finite element analysis
Methods
title A Stabilized Mixed Finite Element Method for Elliptic Systems of First Order
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stabilized%20Mixed%20Finite%20Element%20Method%20for%20Elliptic%20Systems%20of%20First%20Order&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Dobrowolski,%20Manfred&rft.date=2005-01&rft.volume=43&rft.issue=3&rft.spage=949&rft.epage=969&rft.pages=949-969&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/S0036142902408829&rft_dat=%3Cproquest_cross%3E2590198891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-df3e61fcf02e58b2159d380666f88de46e3ea2fc3dae05b1def3c3964c0388b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922260045&rft_id=info:pmid/&rfr_iscdi=true