Loading…

On a Numerical Liapunov--Schmidt Spectral Method and Its Application to Biological Pattern Formation

Spectral expansions are used to provide a basis which preserves continuous symmetries. We show that spectral methods satisfy the conditions for convergence of numerical Liapunov--Schmidt methods. An explicit algorithm for the calculation of stationary bifurcation scenarios near primary instabilities...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2002-01, Vol.40 (2), p.683-701
Main Authors: Böhmer, K., Geiger, C., Rodriguez, J. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3
cites cdi_FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3
container_end_page 701
container_issue 2
container_start_page 683
container_title SIAM journal on numerical analysis
container_volume 40
creator Böhmer, K.
Geiger, C.
Rodriguez, J. D.
description Spectral expansions are used to provide a basis which preserves continuous symmetries. We show that spectral methods satisfy the conditions for convergence of numerical Liapunov--Schmidt methods. An explicit algorithm for the calculation of stationary bifurcation scenarios near primary instabilities in general continuous symmetric equations is given. The above convergence is extended to $ \Gamma$-equivalent discrete and original bifurcation scenarios. The method is applied to a biologically motivated reaction-diffusion system with spherical symmetry forming patterns. A specific singularity of a generic steady state bifurcation is investigated in detail.
doi_str_mv 10.1137/S0036142998339526
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922330957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590724821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3</originalsourceid><addsrcrecordid>eNplkF1LwzAUhoMoWKc_wLvgfTQfTZNczuHmoDphel3SJnUdbVOTVPDf223eeXU4PO95DzwA3BJ8TwgTD1uMWUZSqpRkTHGanYGEYMWRIAKfg-SA0YFfgqsQ9njaJWEJMJseavg6dtY3lW5h3uhh7N03Qttq1zUmwu1gq-gn9GLjzhmoewPXMcD5MLTTSWxcD6ODj41r3eex403HaH0Pl853R34NLmrdBnvzN2fgY_n0vnhG-Wa1XsxzVFFBIzKitFKkLE2t5VhglWGulayloriUiquMGptKqkjJBa51RVNumWGyLpnWyrIZuDv1Dt59jTbEYu9G308vC0UpY5MPMYXIKVR5F4K3dTH4ptP-pyC4OLgs_rlkv8wKZhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922330957</pqid></control><display><type>article</type><title>On a Numerical Liapunov--Schmidt Spectral Method and Its Application to Biological Pattern Formation</title><source>SIAM Journals Archive</source><source>ABI/INFORM global</source><source>JSTOR Archival Journals</source><creator>Böhmer, K. ; Geiger, C. ; Rodriguez, J. D.</creator><creatorcontrib>Böhmer, K. ; Geiger, C. ; Rodriguez, J. D.</creatorcontrib><description>Spectral expansions are used to provide a basis which preserves continuous symmetries. We show that spectral methods satisfy the conditions for convergence of numerical Liapunov--Schmidt methods. An explicit algorithm for the calculation of stationary bifurcation scenarios near primary instabilities in general continuous symmetric equations is given. The above convergence is extended to $ \Gamma$-equivalent discrete and original bifurcation scenarios. The method is applied to a biologically motivated reaction-diffusion system with spherical symmetry forming patterns. A specific singularity of a generic steady state bifurcation is investigated in detail.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142998339526</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Methods ; Navier-Stokes equations ; Symmetry</subject><ispartof>SIAM journal on numerical analysis, 2002-01, Vol.40 (2), p.683-701</ispartof><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3</citedby><cites>FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/922330957?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3171,11668,27903,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Böhmer, K.</creatorcontrib><creatorcontrib>Geiger, C.</creatorcontrib><creatorcontrib>Rodriguez, J. D.</creatorcontrib><title>On a Numerical Liapunov--Schmidt Spectral Method and Its Application to Biological Pattern Formation</title><title>SIAM journal on numerical analysis</title><description>Spectral expansions are used to provide a basis which preserves continuous symmetries. We show that spectral methods satisfy the conditions for convergence of numerical Liapunov--Schmidt methods. An explicit algorithm for the calculation of stationary bifurcation scenarios near primary instabilities in general continuous symmetric equations is given. The above convergence is extended to $ \Gamma$-equivalent discrete and original bifurcation scenarios. The method is applied to a biologically motivated reaction-diffusion system with spherical symmetry forming patterns. A specific singularity of a generic steady state bifurcation is investigated in detail.</description><subject>Algorithms</subject><subject>Methods</subject><subject>Navier-Stokes equations</subject><subject>Symmetry</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkF1LwzAUhoMoWKc_wLvgfTQfTZNczuHmoDphel3SJnUdbVOTVPDf223eeXU4PO95DzwA3BJ8TwgTD1uMWUZSqpRkTHGanYGEYMWRIAKfg-SA0YFfgqsQ9njaJWEJMJseavg6dtY3lW5h3uhh7N03Qttq1zUmwu1gq-gn9GLjzhmoewPXMcD5MLTTSWxcD6ODj41r3eex403HaH0Pl853R34NLmrdBnvzN2fgY_n0vnhG-Wa1XsxzVFFBIzKitFKkLE2t5VhglWGulayloriUiquMGptKqkjJBa51RVNumWGyLpnWyrIZuDv1Dt59jTbEYu9G308vC0UpY5MPMYXIKVR5F4K3dTH4ptP-pyC4OLgs_rlkv8wKZhA</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Böhmer, K.</creator><creator>Geiger, C.</creator><creator>Rodriguez, J. D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20020101</creationdate><title>On a Numerical Liapunov--Schmidt Spectral Method and Its Application to Biological Pattern Formation</title><author>Böhmer, K. ; Geiger, C. ; Rodriguez, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Methods</topic><topic>Navier-Stokes equations</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhmer, K.</creatorcontrib><creatorcontrib>Geiger, C.</creatorcontrib><creatorcontrib>Rodriguez, J. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhmer, K.</au><au>Geiger, C.</au><au>Rodriguez, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Numerical Liapunov--Schmidt Spectral Method and Its Application to Biological Pattern Formation</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>40</volume><issue>2</issue><spage>683</spage><epage>701</epage><pages>683-701</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Spectral expansions are used to provide a basis which preserves continuous symmetries. We show that spectral methods satisfy the conditions for convergence of numerical Liapunov--Schmidt methods. An explicit algorithm for the calculation of stationary bifurcation scenarios near primary instabilities in general continuous symmetric equations is given. The above convergence is extended to $ \Gamma$-equivalent discrete and original bifurcation scenarios. The method is applied to a biologically motivated reaction-diffusion system with spherical symmetry forming patterns. A specific singularity of a generic steady state bifurcation is investigated in detail.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142998339526</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2002-01, Vol.40 (2), p.683-701
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922330957
source SIAM Journals Archive; ABI/INFORM global; JSTOR Archival Journals
subjects Algorithms
Methods
Navier-Stokes equations
Symmetry
title On a Numerical Liapunov--Schmidt Spectral Method and Its Application to Biological Pattern Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Numerical%20Liapunov--Schmidt%20Spectral%20Method%20and%20Its%20Application%20to%20Biological%20Pattern%20Formation&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=B%C3%B6hmer,%20K.&rft.date=2002-01-01&rft.volume=40&rft.issue=2&rft.spage=683&rft.epage=701&rft.pages=683-701&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/S0036142998339526&rft_dat=%3Cproquest_cross%3E2590724821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-d7be874344ee50709605a98f8920b895962de48291b570fac245e3d38fb3aa9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922330957&rft_id=info:pmid/&rfr_iscdi=true