Loading…

Extremal Kähler metrics and energy functionals on projective bundles

In this article, we prove the equivalence of the existence of extremal Kähler metrics and the properness of the modified K -energy on projective bundles. Moreover, we discuss the relations of the lower boundedness of the K -energy, the infimum of the Calabi energy and the extremal polynomials. In pa...

Full description

Saved in:
Bibliographic Details
Published in:Annals of global analysis and geometry 2012-04, Vol.41 (4), p.423-445
Main Author: Li, Haozhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3
cites cdi_FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3
container_end_page 445
container_issue 4
container_start_page 423
container_title Annals of global analysis and geometry
container_volume 41
creator Li, Haozhao
description In this article, we prove the equivalence of the existence of extremal Kähler metrics and the properness of the modified K -energy on projective bundles. Moreover, we discuss the relations of the lower boundedness of the K -energy, the infimum of the Calabi energy and the extremal polynomials. In particular, the author gives an example where the modified K -energy is bounded from below but not proper.
doi_str_mv 10.1007/s10455-011-9292-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922348059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590727651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLvgPnpz2_RnKcP4g4IbBXchTW_HGTrpmLRi38c38cXMUMGVqwvnnnM4fIydS7iUAPlVkJAqJUBKUWKJYjxgM6lyFCVkcMhmgAmKHNLXY3YSwgYAVCLljC2Xn72nrWn5w_fXW0ueb6n3axu4cTUnR3418mZwtl93zrSBd47vfLehKHwQrwZXtxRO2VETn3T2e-fs5Wb5vLgTj0-394vrR2ETqXrR2KKCxihTFQqB0jK3ytQmqwFRmtTaAqNEVVURqgylJYm5LIuibtIsyyiZs4upN054Hyj0etMNfr9Ll4hJWoAqo0lOJuu7EDw1eufXW-NHLUHvYekJlo6w9B6WHmMGp0yIXrci_1f8f-gH9N1ufg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922348059</pqid></control><display><type>article</type><title>Extremal Kähler metrics and energy functionals on projective bundles</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Li, Haozhao</creator><creatorcontrib>Li, Haozhao</creatorcontrib><description>In this article, we prove the equivalence of the existence of extremal Kähler metrics and the properness of the modified K -energy on projective bundles. Moreover, we discuss the relations of the lower boundedness of the K -energy, the infimum of the Calabi energy and the extremal polynomials. In particular, the author gives an example where the modified K -energy is bounded from below but not proper.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-011-9292-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Energy ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematical functions ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Studies ; Topological manifolds</subject><ispartof>Annals of global analysis and geometry, 2012-04, Vol.41 (4), p.423-445</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3</citedby><cites>FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/922348059/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/922348059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Li, Haozhao</creatorcontrib><title>Extremal Kähler metrics and energy functionals on projective bundles</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>In this article, we prove the equivalence of the existence of extremal Kähler metrics and the properness of the modified K -energy on projective bundles. Moreover, we discuss the relations of the lower boundedness of the K -energy, the infimum of the Calabi energy and the extremal polynomials. In particular, the author gives an example where the modified K -energy is bounded from below but not proper.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Energy</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematical functions</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Studies</subject><subject>Topological manifolds</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLvgPnpz2_RnKcP4g4IbBXchTW_HGTrpmLRi38c38cXMUMGVqwvnnnM4fIydS7iUAPlVkJAqJUBKUWKJYjxgM6lyFCVkcMhmgAmKHNLXY3YSwgYAVCLljC2Xn72nrWn5w_fXW0ueb6n3axu4cTUnR3418mZwtl93zrSBd47vfLehKHwQrwZXtxRO2VETn3T2e-fs5Wb5vLgTj0-394vrR2ETqXrR2KKCxihTFQqB0jK3ytQmqwFRmtTaAqNEVVURqgylJYm5LIuibtIsyyiZs4upN054Hyj0etMNfr9Ll4hJWoAqo0lOJuu7EDw1eufXW-NHLUHvYekJlo6w9B6WHmMGp0yIXrci_1f8f-gH9N1ufg</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Li, Haozhao</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120401</creationdate><title>Extremal Kähler metrics and energy functionals on projective bundles</title><author>Li, Haozhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Energy</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematical functions</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Studies</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haozhao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haozhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal Kähler metrics and energy functionals on projective bundles</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>41</volume><issue>4</issue><spage>423</spage><epage>445</epage><pages>423-445</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>In this article, we prove the equivalence of the existence of extremal Kähler metrics and the properness of the modified K -energy on projective bundles. Moreover, we discuss the relations of the lower boundedness of the K -energy, the infimum of the Calabi energy and the extremal polynomials. In particular, the author gives an example where the modified K -energy is bounded from below but not proper.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-011-9292-y</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2012-04, Vol.41 (4), p.423-445
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_922348059
source ABI/INFORM Global; Springer Nature
subjects Analysis
Differential Geometry
Energy
Geometry
Global Analysis and Analysis on Manifolds
Mathematical functions
Mathematical Physics
Mathematics
Mathematics and Statistics
Studies
Topological manifolds
title Extremal Kähler metrics and energy functionals on projective bundles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20K%C3%A4hler%20metrics%20and%20energy%20functionals%20on%20projective%20bundles&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Li,%20Haozhao&rft.date=2012-04-01&rft.volume=41&rft.issue=4&rft.spage=423&rft.epage=445&rft.pages=423-445&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-011-9292-y&rft_dat=%3Cproquest_cross%3E2590727651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-fc8b0fa5ab8520e497c5ada6d0221a4cc8297cebbbe25621ce1271988df4666e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922348059&rft_id=info:pmid/&rfr_iscdi=true