Loading…

Water and sediment dynamics of penoxsulam and molinate in paddy fields: field and lysimeter studies

BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In fi...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2012-03, Vol.68 (3), p.399-403
Main Authors: Kogan, Marcelo, Araya, Manuel, Alister, Claudio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment adsorption and degradation are considered to have a secondary effect on the dissipation of both herbicides in paddy fields. Copyright © 2011 Society of Chemical Industry
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.2276