Loading…
The Discrete k-Functional and Spline Smoothing of Noisy Data
Estimation of a function f from a finite sample y = [ f(xi) + εi], xi∈ [ a, b ], subject to random noise εi, is a basic problem of numerical approximation theory. This paper defines a discrete analog, km(y, λ), of Peetre's K-functional, which relates to spline smoothing. We show how to use kman...
Saved in:
Published in: | SIAM journal on numerical analysis 1985-12, Vol.22 (6), p.1243-1254 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c262t-df406a603b38dee4382cd24214c122e7c88d4a2b7f217de3c96fef8b8556ecbb3 |
container_end_page | 1254 |
container_issue | 6 |
container_start_page | 1243 |
container_title | SIAM journal on numerical analysis |
container_volume | 22 |
creator | Ragozin, David L. |
description | Estimation of a function f from a finite sample y = [ f(xi) + εi], xi∈ [ a, b ], subject to random noise εi, is a basic problem of numerical approximation theory. This paper defines a discrete analog, km(y, λ), of Peetre's K-functional, which relates to spline smoothing. We show how to use kmand its connection to the mth order modulus of continuity to assess the smoothness of f and to choose a good smoothing spline approximation to f and some of its derivatives. |
doi_str_mv | 10.1137/0722077 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923406791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157551</jstor_id><sourcerecordid>2157551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-df406a603b38dee4382cd24214c122e7c88d4a2b7f217de3c96fef8b8556ecbb3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_gEPQQRPq5lk87HgRVqrQtFD63nJZhO7dbtZk_TQf-9KS0_DMA8vw4vQNZAHACYfiaSUSHmCRkAKnkmQ5BSNCGEig5wW5-gixjUZdgVshJ6WK4unTTTBJot_stm2M6nxnW6x7mq86Nums3ix8T6tmu4be4c_fBN3eKqTvkRnTrfRXh3mGH3NXpaTt2z--fo-eZ5nhgqastrlRGhBWMVUbW3OFDU1zSnkBii10ihV55pW0lGQtWWmEM46VSnOhTVVxcbodp_bB_-7tTGVa78Nw4-xLCgbwmUBA7rfIxN8jMG6sg_NRoddCaT8b6Y8NDPIu0Ocjka3LujONPHIFRdEyWJgN3u2jsmH45kCl5wD-wNn4Gl-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923406791</pqid></control><display><type>article</type><title>The Discrete k-Functional and Spline Smoothing of Noisy Data</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Ragozin, David L.</creator><creatorcontrib>Ragozin, David L.</creatorcontrib><description>Estimation of a function f from a finite sample y = [ f(xi) + εi], xi∈ [ a, b ], subject to random noise εi, is a basic problem of numerical approximation theory. This paper defines a discrete analog, km(y, λ), of Peetre's K-functional, which relates to spline smoothing. We show how to use kmand its connection to the mth order modulus of continuity to assess the smoothness of f and to choose a good smoothing spline approximation to f and some of its derivatives.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0722077</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Data smoothing ; Eigenvalues ; Exact sciences and technology ; Fourier transformations ; Information retrieval noise ; Inner products ; Mathematical functions ; Mathematical inequalities ; Mathematical vectors ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Sciences and techniques of general use ; Slope of a line</subject><ispartof>SIAM journal on numerical analysis, 1985-12, Vol.22 (6), p.1243-1254</ispartof><rights>Copyright 1985 Society for Industrial and Applied Mathematics</rights><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1985 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-df406a603b38dee4382cd24214c122e7c88d4a2b7f217de3c96fef8b8556ecbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157551$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/923406791?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3173,11670,27906,27907,36042,44345,58220,58453</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8560879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ragozin, David L.</creatorcontrib><title>The Discrete k-Functional and Spline Smoothing of Noisy Data</title><title>SIAM journal on numerical analysis</title><description>Estimation of a function f from a finite sample y = [ f(xi) + εi], xi∈ [ a, b ], subject to random noise εi, is a basic problem of numerical approximation theory. This paper defines a discrete analog, km(y, λ), of Peetre's K-functional, which relates to spline smoothing. We show how to use kmand its connection to the mth order modulus of continuity to assess the smoothness of f and to choose a good smoothing spline approximation to f and some of its derivatives.</description><subject>Approximation</subject><subject>Data smoothing</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fourier transformations</subject><subject>Information retrieval noise</subject><subject>Inner products</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Sciences and techniques of general use</subject><subject>Slope of a line</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90E1LAzEQBuAgCtYq_gEPQQRPq5lk87HgRVqrQtFD63nJZhO7dbtZk_TQf-9KS0_DMA8vw4vQNZAHACYfiaSUSHmCRkAKnkmQ5BSNCGEig5wW5-gixjUZdgVshJ6WK4unTTTBJot_stm2M6nxnW6x7mq86Nums3ix8T6tmu4be4c_fBN3eKqTvkRnTrfRXh3mGH3NXpaTt2z--fo-eZ5nhgqastrlRGhBWMVUbW3OFDU1zSnkBii10ihV55pW0lGQtWWmEM46VSnOhTVVxcbodp_bB_-7tTGVa78Nw4-xLCgbwmUBA7rfIxN8jMG6sg_NRoddCaT8b6Y8NDPIu0Ocjka3LujONPHIFRdEyWJgN3u2jsmH45kCl5wD-wNn4Gl-</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>Ragozin, David L.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19851201</creationdate><title>The Discrete k-Functional and Spline Smoothing of Noisy Data</title><author>Ragozin, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-df406a603b38dee4382cd24214c122e7c88d4a2b7f217de3c96fef8b8556ecbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Approximation</topic><topic>Data smoothing</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fourier transformations</topic><topic>Information retrieval noise</topic><topic>Inner products</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Sciences and techniques of general use</topic><topic>Slope of a line</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragozin, David L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragozin, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Discrete k-Functional and Spline Smoothing of Noisy Data</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1985-12-01</date><risdate>1985</risdate><volume>22</volume><issue>6</issue><spage>1243</spage><epage>1254</epage><pages>1243-1254</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>Estimation of a function f from a finite sample y = [ f(xi) + εi], xi∈ [ a, b ], subject to random noise εi, is a basic problem of numerical approximation theory. This paper defines a discrete analog, km(y, λ), of Peetre's K-functional, which relates to spline smoothing. We show how to use kmand its connection to the mth order modulus of continuity to assess the smoothness of f and to choose a good smoothing spline approximation to f and some of its derivatives.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0722077</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1985-12, Vol.22 (6), p.1243-1254 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923406791 |
source | JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Data smoothing Eigenvalues Exact sciences and technology Fourier transformations Information retrieval noise Inner products Mathematical functions Mathematical inequalities Mathematical vectors Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Sciences and techniques of general use Slope of a line |
title | The Discrete k-Functional and Spline Smoothing of Noisy Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Discrete%20k-Functional%20and%20Spline%20Smoothing%20of%20Noisy%20Data&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Ragozin,%20David%20L.&rft.date=1985-12-01&rft.volume=22&rft.issue=6&rft.spage=1243&rft.epage=1254&rft.pages=1243-1254&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0722077&rft_dat=%3Cjstor_proqu%3E2157551%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-df406a603b38dee4382cd24214c122e7c88d4a2b7f217de3c96fef8b8556ecbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923406791&rft_id=info:pmid/&rft_jstor_id=2157551&rfr_iscdi=true |