Loading…
Generalized Deflated Block-Elimination
A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ...
Saved in:
Published in: | SIAM journal on numerical analysis 1986-10, Vol.23 (5), p.913-924 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53 |
container_end_page | 924 |
container_issue | 5 |
container_start_page | 913 |
container_title | SIAM journal on numerical analysis |
container_volume | 23 |
creator | Chan, Tony F. Resasco, Diana C. |
description | A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization. |
doi_str_mv | 10.1137/0723059 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923407481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157501</jstor_id><sourcerecordid>2157501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsEbxD3gQET1FZ_ajmz3aWqtQ8KLnsJ-QmCZ1Nz3or3elpaeZYZ553-El5BLhAZHJR5CUgVBHZIKgRClRwjGZALBpiZyqU3KWUgt5rpBNyN3S9z7qrvn17vrZh06PuZl1g_0qF12zbno9NkN_Tk6C7pK_2NeCfL4sPuav5ep9-TZ_WpWWMjqWzoZqSqkHIyqthGFOmyCNc0KC9pwrYQ3nwUyVCoAgOffoFLVOC-TGCFaQm53uJg7fW5_Guh22sc-WtaKM54v8dUHud5CNQ0rRh3oTm7WOPzVC_Z9Bvc8gk7d7OZ2s7kLUvW3SAa8AkSLN2NUOa9M4xMOaopACkP0B4BFiCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923407481</pqid></control><display><type>article</type><title>Generalized Deflated Block-Elimination</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Chan, Tony F. ; Resasco, Diana C.</creator><creatorcontrib>Chan, Tony F. ; Resasco, Diana C.</creatorcontrib><description>A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0723059</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Constrained optimization ; Decomposition ; Deflation ; Exact sciences and technology ; Factorization ; Gaussian elimination ; Mathematics ; Matrices ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Optimization ; Research fellowships ; Sciences and techniques of general use</subject><ispartof>SIAM journal on numerical analysis, 1986-10, Vol.23 (5), p.913-924</ispartof><rights>Copyright 1986 Society for Industrial and Applied Mathematics</rights><rights>1987 INIST-CNRS</rights><rights>[Copyright] © 1986 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</citedby><cites>FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157501$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/923407481?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8011212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Tony F.</creatorcontrib><creatorcontrib>Resasco, Diana C.</creatorcontrib><title>Generalized Deflated Block-Elimination</title><title>SIAM journal on numerical analysis</title><description>A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.</description><subject>Algorithms</subject><subject>Constrained optimization</subject><subject>Decomposition</subject><subject>Deflation</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Gaussian elimination</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Optimization</subject><subject>Research fellowships</subject><subject>Sciences and techniques of general use</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kE1Lw0AQhhdRsEbxD3gQET1FZ_ajmz3aWqtQ8KLnsJ-QmCZ1Nz3or3elpaeZYZ553-El5BLhAZHJR5CUgVBHZIKgRClRwjGZALBpiZyqU3KWUgt5rpBNyN3S9z7qrvn17vrZh06PuZl1g_0qF12zbno9NkN_Tk6C7pK_2NeCfL4sPuav5ep9-TZ_WpWWMjqWzoZqSqkHIyqthGFOmyCNc0KC9pwrYQ3nwUyVCoAgOffoFLVOC-TGCFaQm53uJg7fW5_Guh22sc-WtaKM54v8dUHud5CNQ0rRh3oTm7WOPzVC_Z9Bvc8gk7d7OZ2s7kLUvW3SAa8AkSLN2NUOa9M4xMOaopACkP0B4BFiCw</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Chan, Tony F.</creator><creator>Resasco, Diana C.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19861001</creationdate><title>Generalized Deflated Block-Elimination</title><author>Chan, Tony F. ; Resasco, Diana C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Algorithms</topic><topic>Constrained optimization</topic><topic>Decomposition</topic><topic>Deflation</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Gaussian elimination</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Optimization</topic><topic>Research fellowships</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Tony F.</creatorcontrib><creatorcontrib>Resasco, Diana C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Tony F.</au><au>Resasco, Diana C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Deflated Block-Elimination</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>23</volume><issue>5</issue><spage>913</spage><epage>924</epage><pages>913-924</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0723059</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1986-10, Vol.23 (5), p.913-924 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923407481 |
source | JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Constrained optimization Decomposition Deflation Exact sciences and technology Factorization Gaussian elimination Mathematics Matrices Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Optimization Research fellowships Sciences and techniques of general use |
title | Generalized Deflated Block-Elimination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Deflated%20Block-Elimination&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Chan,%20Tony%20F.&rft.date=1986-10-01&rft.volume=23&rft.issue=5&rft.spage=913&rft.epage=924&rft.pages=913-924&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0723059&rft_dat=%3Cjstor_proqu%3E2157501%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923407481&rft_id=info:pmid/&rft_jstor_id=2157501&rfr_iscdi=true |