Loading…

Generalized Deflated Block-Elimination

A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 1986-10, Vol.23 (5), p.913-924
Main Authors: Chan, Tony F., Resasco, Diana C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53
cites cdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53
container_end_page 924
container_issue 5
container_start_page 913
container_title SIAM journal on numerical analysis
container_volume 23
creator Chan, Tony F.
Resasco, Diana C.
description A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A & B \\C^T & D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.
doi_str_mv 10.1137/0723059
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923407481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157501</jstor_id><sourcerecordid>2157501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsEbxD3gQET1FZ_ajmz3aWqtQ8KLnsJ-QmCZ1Nz3or3elpaeZYZ553-El5BLhAZHJR5CUgVBHZIKgRClRwjGZALBpiZyqU3KWUgt5rpBNyN3S9z7qrvn17vrZh06PuZl1g_0qF12zbno9NkN_Tk6C7pK_2NeCfL4sPuav5ep9-TZ_WpWWMjqWzoZqSqkHIyqthGFOmyCNc0KC9pwrYQ3nwUyVCoAgOffoFLVOC-TGCFaQm53uJg7fW5_Guh22sc-WtaKM54v8dUHud5CNQ0rRh3oTm7WOPzVC_Z9Bvc8gk7d7OZ2s7kLUvW3SAa8AkSLN2NUOa9M4xMOaopACkP0B4BFiCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923407481</pqid></control><display><type>article</type><title>Generalized Deflated Block-Elimination</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Chan, Tony F. ; Resasco, Diana C.</creator><creatorcontrib>Chan, Tony F. ; Resasco, Diana C.</creatorcontrib><description>A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A &amp; B \\C^T &amp; D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0723059</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Constrained optimization ; Decomposition ; Deflation ; Exact sciences and technology ; Factorization ; Gaussian elimination ; Mathematics ; Matrices ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Optimization ; Research fellowships ; Sciences and techniques of general use</subject><ispartof>SIAM journal on numerical analysis, 1986-10, Vol.23 (5), p.913-924</ispartof><rights>Copyright 1986 Society for Industrial and Applied Mathematics</rights><rights>1987 INIST-CNRS</rights><rights>[Copyright] © 1986 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</citedby><cites>FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157501$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/923407481?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8011212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Tony F.</creatorcontrib><creatorcontrib>Resasco, Diana C.</creatorcontrib><title>Generalized Deflated Block-Elimination</title><title>SIAM journal on numerical analysis</title><description>A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A &amp; B \\C^T &amp; D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.</description><subject>Algorithms</subject><subject>Constrained optimization</subject><subject>Decomposition</subject><subject>Deflation</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Gaussian elimination</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Optimization</subject><subject>Research fellowships</subject><subject>Sciences and techniques of general use</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kE1Lw0AQhhdRsEbxD3gQET1FZ_ajmz3aWqtQ8KLnsJ-QmCZ1Nz3or3elpaeZYZ553-El5BLhAZHJR5CUgVBHZIKgRClRwjGZALBpiZyqU3KWUgt5rpBNyN3S9z7qrvn17vrZh06PuZl1g_0qF12zbno9NkN_Tk6C7pK_2NeCfL4sPuav5ep9-TZ_WpWWMjqWzoZqSqkHIyqthGFOmyCNc0KC9pwrYQ3nwUyVCoAgOffoFLVOC-TGCFaQm53uJg7fW5_Guh22sc-WtaKM54v8dUHud5CNQ0rRh3oTm7WOPzVC_Z9Bvc8gk7d7OZ2s7kLUvW3SAa8AkSLN2NUOa9M4xMOaopACkP0B4BFiCw</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Chan, Tony F.</creator><creator>Resasco, Diana C.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19861001</creationdate><title>Generalized Deflated Block-Elimination</title><author>Chan, Tony F. ; Resasco, Diana C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Algorithms</topic><topic>Constrained optimization</topic><topic>Decomposition</topic><topic>Deflation</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Gaussian elimination</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Optimization</topic><topic>Research fellowships</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Tony F.</creatorcontrib><creatorcontrib>Resasco, Diana C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Tony F.</au><au>Resasco, Diana C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Deflated Block-Elimination</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>23</volume><issue>5</issue><spage>913</spage><epage>924</epage><pages>913-924</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>A stable algorithm is presented to solve a nonsingular bordered system of the form \begin {equation*} \begin{p matrix} A &amp; B \\C^T &amp; D \end{p matrix} \binom{x}{y} = \binom{f}{g},\end {equation*} where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most μ small singular values. The algorithm needs only a solver for A and the solution to an m + μ by m + μ dense linear system. It is, thus, well suited for problems for which A has easily exploitable structures and m + μ ≪ n, such as in continuation methods, bifurcation problems and constrained optimization.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0723059</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1986-10, Vol.23 (5), p.913-924
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923407481
source JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Algorithms
Constrained optimization
Decomposition
Deflation
Exact sciences and technology
Factorization
Gaussian elimination
Mathematics
Matrices
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Optimization
Research fellowships
Sciences and techniques of general use
title Generalized Deflated Block-Elimination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Deflated%20Block-Elimination&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Chan,%20Tony%20F.&rft.date=1986-10-01&rft.volume=23&rft.issue=5&rft.spage=913&rft.epage=924&rft.pages=913-924&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0723059&rft_dat=%3Cjstor_proqu%3E2157501%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-dcf8622e0b58a95b3dabf7bdd570ae4495cb44fb699f010744e1d92cda514bb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923407481&rft_id=info:pmid/&rft_jstor_id=2157501&rfr_iscdi=true