Loading…
Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations
This paper presents an explicit scheme which may be broken into several steps. The first one is a transport phase for a time step, with a projection on a Lagrangian mesh. Then a new projection is performed on a fixed Eulerian mesh. Lastly a corrected antidiffusion step of the SHASTA type occurs. A s...
Saved in:
Published in: | SIAM journal on numerical analysis 1984-10, Vol.21 (5), p.985-994 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183 |
---|---|
cites | cdi_FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183 |
container_end_page | 994 |
container_issue | 5 |
container_start_page | 985 |
container_title | SIAM journal on numerical analysis |
container_volume | 21 |
creator | Le Roux, A. Y. Quesseveur, P. |
description | This paper presents an explicit scheme which may be broken into several steps. The first one is a transport phase for a time step, with a projection on a Lagrangian mesh. Then a new projection is performed on a fixed Eulerian mesh. Lastly a corrected antidiffusion step of the SHASTA type occurs. A stability condition appears to make the scheme easily computable. This condition allows larger timesteps than the well known Courant-Friedrichs-Lewy condition. A more complex version of the scheme is proposed, which works without any stability condition. Convergence towards the entropy solution is proved. A few numerical experiments are reported, showing the quality of the approximation of shocks or giving some information about the precision. |
doi_str_mv | 10.1137/0721061 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923427831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594919901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183</originalsourceid><addsrcrecordid>eNotkEFLAzEQhYMoWKv4F4IXT6uZzTbZHEupVSgUsfclTSbrlm3SJruC_95Ie5lh4OO9N4-QR2AvAFy-MlkCE3BFJsDUrJAg2TWZMMZFAVWpbsldSnuW7xr4hGwWwf9gbNEbpMFR7encD53tnBtTFzxd6zZq32KxHHuM9Mt84wGpC5F-jjp1fedRR7o8jXrIeLonN073CR8ue0q2b8vt4r1Yb1Yfi_m6MEpCHqLiFg2vpWQWBGiwleamKqUBlDthtFI2vyGsskbl3Aaqys0Er3m9g5pPydNZ9hjDacQ0NPswRp8dG1XyLFNzyNDzGTIxpBTRNcfYHXT8bYA1_101l674HwCpWeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923427831</pqid></control><display><type>article</type><title>Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><source>Access via JSTOR</source><creator>Le Roux, A. Y. ; Quesseveur, P.</creator><creatorcontrib>Le Roux, A. Y. ; Quesseveur, P.</creatorcontrib><description>This paper presents an explicit scheme which may be broken into several steps. The first one is a transport phase for a time step, with a projection on a Lagrangian mesh. Then a new projection is performed on a fixed Eulerian mesh. Lastly a corrected antidiffusion step of the SHASTA type occurs. A stability condition appears to make the scheme easily computable. This condition allows larger timesteps than the well known Courant-Friedrichs-Lewy condition. A more complex version of the scheme is proposed, which works without any stability condition. Convergence towards the entropy solution is proved. A few numerical experiments are reported, showing the quality of the approximation of shocks or giving some information about the precision.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0721061</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Entropy</subject><ispartof>SIAM journal on numerical analysis, 1984-10, Vol.21 (5), p.985-994</ispartof><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183</citedby><cites>FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923427831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Le Roux, A. Y.</creatorcontrib><creatorcontrib>Quesseveur, P.</creatorcontrib><title>Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations</title><title>SIAM journal on numerical analysis</title><description>This paper presents an explicit scheme which may be broken into several steps. The first one is a transport phase for a time step, with a projection on a Lagrangian mesh. Then a new projection is performed on a fixed Eulerian mesh. Lastly a corrected antidiffusion step of the SHASTA type occurs. A stability condition appears to make the scheme easily computable. This condition allows larger timesteps than the well known Courant-Friedrichs-Lewy condition. A more complex version of the scheme is proposed, which works without any stability condition. Convergence towards the entropy solution is proved. A few numerical experiments are reported, showing the quality of the approximation of shocks or giving some information about the precision.</description><subject>Entropy</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkEFLAzEQhYMoWKv4F4IXT6uZzTbZHEupVSgUsfclTSbrlm3SJruC_95Ie5lh4OO9N4-QR2AvAFy-MlkCE3BFJsDUrJAg2TWZMMZFAVWpbsldSnuW7xr4hGwWwf9gbNEbpMFR7encD53tnBtTFzxd6zZq32KxHHuM9Mt84wGpC5F-jjp1fedRR7o8jXrIeLonN073CR8ue0q2b8vt4r1Yb1Yfi_m6MEpCHqLiFg2vpWQWBGiwleamKqUBlDthtFI2vyGsskbl3Aaqys0Er3m9g5pPydNZ9hjDacQ0NPswRp8dG1XyLFNzyNDzGTIxpBTRNcfYHXT8bYA1_101l674HwCpWeM</recordid><startdate>198410</startdate><enddate>198410</enddate><creator>Le Roux, A. Y.</creator><creator>Quesseveur, P.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>198410</creationdate><title>Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations</title><author>Le Roux, A. Y. ; Quesseveur, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Roux, A. Y.</creatorcontrib><creatorcontrib>Quesseveur, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Roux, A. Y.</au><au>Quesseveur, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1984-10</date><risdate>1984</risdate><volume>21</volume><issue>5</issue><spage>985</spage><epage>994</epage><pages>985-994</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This paper presents an explicit scheme which may be broken into several steps. The first one is a transport phase for a time step, with a projection on a Lagrangian mesh. Then a new projection is performed on a fixed Eulerian mesh. Lastly a corrected antidiffusion step of the SHASTA type occurs. A stability condition appears to make the scheme easily computable. This condition allows larger timesteps than the well known Courant-Friedrichs-Lewy condition. A more complex version of the scheme is proposed, which works without any stability condition. Convergence towards the entropy solution is proved. A few numerical experiments are reported, showing the quality of the approximation of shocks or giving some information about the precision.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0721061</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1984-10, Vol.21 (5), p.985-994 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923427831 |
source | ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive; Access via JSTOR |
subjects | Entropy |
title | Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20an%20Antidiffusion%20Lagrange-Euler%20Scheme%20for%20Quasilinear%20Equations&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Le%20Roux,%20A.%20Y.&rft.date=1984-10&rft.volume=21&rft.issue=5&rft.spage=985&rft.epage=994&rft.pages=985-994&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0721061&rft_dat=%3Cproquest_cross%3E2594919901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c971-c9643dec38770d161a1d4a3c427c1e7b6ca99d1066d9dc9142c144f563838b183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923427831&rft_id=info:pmid/&rfr_iscdi=true |