Loading…

Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness

In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which ess...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 2008-01, Vol.30 (3), p.1033-1066
Main Author: De Lathauwer, Lieven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3
cites cdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3
container_end_page 1066
container_issue 3
container_start_page 1033
container_title SIAM journal on matrix analysis and applications
container_volume 30
creator De Lathauwer, Lieven
description In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.
doi_str_mv 10.1137/070690729
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923671277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596143311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</originalsourceid><addsrcrecordid>eNo9kD1OAzEUhC0EEiFQcAOLjmLBf7te00ECJFKkUCQd0sprP4NDYgd7U9BxCE7ISVhERPXmSd_MSIPQOSVXlHJ5TSSpFJFMHaABJaosJK3YIRqQutdCqvoYneS8IoRWQtEBeh6DiZttzL7zMWQcHdZ44l9eIRXzZCHhBYQcE_YB362jeev_tMnfn19POnV4Or3BY3A-7O06WLwM_n0HAXI-RUdOrzOc7e8QLR_uF6NJMZs_Tke3s8JwxrpCgHUghLMtAeFqrqhloFpeck6MFVRQsFabHiOlFnXF21qUgmmwQExFWj5EF3-52xT76tw1q7hLoa9sFOOVpEzKHrr8g0yKOSdwzTb5jU4fDSXN73bN_3b8BznzYbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923671277</pqid></control><display><type>article</type><title>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Collection</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>De Lathauwer, Lieven</creator><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><description>In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/070690729</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Decomposition</subject><ispartof>SIAM journal on matrix analysis and applications, 2008-01, Vol.30 (3), p.1033-1066</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</citedby><cites>FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923671277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><title>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</title><title>SIAM journal on matrix analysis and applications</title><description>In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.</description><subject>Decomposition</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kD1OAzEUhC0EEiFQcAOLjmLBf7te00ECJFKkUCQd0sprP4NDYgd7U9BxCE7ISVhERPXmSd_MSIPQOSVXlHJ5TSSpFJFMHaABJaosJK3YIRqQutdCqvoYneS8IoRWQtEBeh6DiZttzL7zMWQcHdZ44l9eIRXzZCHhBYQcE_YB362jeev_tMnfn19POnV4Or3BY3A-7O06WLwM_n0HAXI-RUdOrzOc7e8QLR_uF6NJMZs_Tke3s8JwxrpCgHUghLMtAeFqrqhloFpeck6MFVRQsFabHiOlFnXF21qUgmmwQExFWj5EF3-52xT76tw1q7hLoa9sFOOVpEzKHrr8g0yKOSdwzTb5jU4fDSXN73bN_3b8BznzYbw</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>De Lathauwer, Lieven</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200801</creationdate><title>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</title><author>De Lathauwer, Lieven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Collection</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Lathauwer, Lieven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2008-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>1033</spage><epage>1066</epage><pages>1033-1066</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070690729</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2008-01, Vol.30 (3), p.1033-1066
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_923671277
source EBSCOhost Business Source Ultimate; ABI/INFORM Collection; LOCUS - SIAM's Online Journal Archive
subjects Decomposition
title Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decompositions%20of%20a%20Higher-Order%20Tensor%20in%20Block%20Terms%E2%80%94Part%20II:%20Definitions%20and%20Uniqueness&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=De%20Lathauwer,%20Lieven&rft.date=2008-01&rft.volume=30&rft.issue=3&rft.spage=1033&rft.epage=1066&rft.pages=1033-1066&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/070690729&rft_dat=%3Cproquest_cross%3E2596143311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923671277&rft_id=info:pmid/&rfr_iscdi=true