Loading…
Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness
In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which ess...
Saved in:
Published in: | SIAM journal on matrix analysis and applications 2008-01, Vol.30 (3), p.1033-1066 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3 |
container_end_page | 1066 |
container_issue | 3 |
container_start_page | 1033 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 30 |
creator | De Lathauwer, Lieven |
description | In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra. |
doi_str_mv | 10.1137/070690729 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923671277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596143311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</originalsourceid><addsrcrecordid>eNo9kD1OAzEUhC0EEiFQcAOLjmLBf7te00ECJFKkUCQd0sprP4NDYgd7U9BxCE7ISVhERPXmSd_MSIPQOSVXlHJ5TSSpFJFMHaABJaosJK3YIRqQutdCqvoYneS8IoRWQtEBeh6DiZttzL7zMWQcHdZ44l9eIRXzZCHhBYQcE_YB362jeev_tMnfn19POnV4Or3BY3A-7O06WLwM_n0HAXI-RUdOrzOc7e8QLR_uF6NJMZs_Tke3s8JwxrpCgHUghLMtAeFqrqhloFpeck6MFVRQsFabHiOlFnXF21qUgmmwQExFWj5EF3-52xT76tw1q7hLoa9sFOOVpEzKHrr8g0yKOSdwzTb5jU4fDSXN73bN_3b8BznzYbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923671277</pqid></control><display><type>article</type><title>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Collection</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>De Lathauwer, Lieven</creator><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><description>In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/070690729</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Decomposition</subject><ispartof>SIAM journal on matrix analysis and applications, 2008-01, Vol.30 (3), p.1033-1066</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</citedby><cites>FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923671277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><title>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</title><title>SIAM journal on matrix analysis and applications</title><description>In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.</description><subject>Decomposition</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kD1OAzEUhC0EEiFQcAOLjmLBf7te00ECJFKkUCQd0sprP4NDYgd7U9BxCE7ISVhERPXmSd_MSIPQOSVXlHJ5TSSpFJFMHaABJaosJK3YIRqQutdCqvoYneS8IoRWQtEBeh6DiZttzL7zMWQcHdZ44l9eIRXzZCHhBYQcE_YB362jeev_tMnfn19POnV4Or3BY3A-7O06WLwM_n0HAXI-RUdOrzOc7e8QLR_uF6NJMZs_Tke3s8JwxrpCgHUghLMtAeFqrqhloFpeck6MFVRQsFabHiOlFnXF21qUgmmwQExFWj5EF3-52xT76tw1q7hLoa9sFOOVpEzKHrr8g0yKOSdwzTb5jU4fDSXN73bN_3b8BznzYbw</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>De Lathauwer, Lieven</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200801</creationdate><title>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</title><author>De Lathauwer, Lieven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Lathauwer, Lieven</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Collection</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Lathauwer, Lieven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2008-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>1033</spage><epage>1066</epage><pages>1033-1066</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>In this paper we introduce a new class of tensor decompositions. Intuitively, we decompose a given tensor block into blocks of smaller size, where the size is characterized by a set of mode-$n$ ranks. We study different types of such decompositions. For each type we derive conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and Tucker's decomposition can be considered as special cases in the new framework. The paper sheds new light on fundamental aspects of tensor algebra.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070690729</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2008-01, Vol.30 (3), p.1033-1066 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923671277 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Collection; LOCUS - SIAM's Online Journal Archive |
subjects | Decomposition |
title | Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decompositions%20of%20a%20Higher-Order%20Tensor%20in%20Block%20Terms%E2%80%94Part%20II:%20Definitions%20and%20Uniqueness&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=De%20Lathauwer,%20Lieven&rft.date=2008-01&rft.volume=30&rft.issue=3&rft.spage=1033&rft.epage=1066&rft.pages=1033-1066&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/070690729&rft_dat=%3Cproquest_cross%3E2596143311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-4edfe44fdb0e4f8391d2e9b35330cd4141eddac4ed05a4863b84542aede0c60b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923671277&rft_id=info:pmid/&rfr_iscdi=true |