Loading…

GMRES On (Nearly) Singular Systems

We consider the behavior of the GMRES method for solving a linear system $Ax = b$ when $A$ is singular or nearly so, i.e., ill conditioned. The (near) singularity of $A$ may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For si...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 1997-01, Vol.18 (1), p.37-51
Main Authors: Brown, Peter N., Walker, Homer F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203
cites cdi_FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203
container_end_page 51
container_issue 1
container_start_page 37
container_title SIAM journal on matrix analysis and applications
container_volume 18
creator Brown, Peter N.
Walker, Homer F.
description We consider the behavior of the GMRES method for solving a linear system $Ax = b$ when $A$ is singular or nearly so, i.e., ill conditioned. The (near) singularity of $A$ may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular $A$, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.
doi_str_mv 10.1137/S0895479894262339
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923760867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596624731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203</originalsourceid><addsrcrecordid>eNplkD1PwzAURS0EEqHwA9iiTjAE_PwZj6gqBalQicBsBfsFtUqTYidD_n0TlY3pDvfoHukScgv0AYDrx4LmRgptciOYYpybM5IANTLToNg5SaY6m_pLchXjjlJQwkBC5qu3j2WRbpr07h3LUA_3abFtfvq6DGkxxA738ZpcVGUd8eYvZ-Trefm5eMnWm9Xr4mmdOQ68y7xhPgepvz0I8A68l1DRqhxNzksPnkp0kqJXCEJLhRwo6pwJjegdo3xG5qfdQ2h_e4yd3bV9aEalNYxrRXOlRwhOkAttjAErewjbfRkGC9ROT9h_T_Aj_jdN9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923760867</pqid></control><display><type>article</type><title>GMRES On (Nearly) Singular Systems</title><source>SIAM Journals Archive</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><creator>Brown, Peter N. ; Walker, Homer F.</creator><creatorcontrib>Brown, Peter N. ; Walker, Homer F.</creatorcontrib><description>We consider the behavior of the GMRES method for solving a linear system $Ax = b$ when $A$ is singular or nearly so, i.e., ill conditioned. The (near) singularity of $A$ may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular $A$, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/S0895479894262339</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Laboratories ; Linear algebra ; Markov analysis ; Methods</subject><ispartof>SIAM journal on matrix analysis and applications, 1997-01, Vol.18 (1), p.37-51</ispartof><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203</citedby><cites>FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923760867?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Brown, Peter N.</creatorcontrib><creatorcontrib>Walker, Homer F.</creatorcontrib><title>GMRES On (Nearly) Singular Systems</title><title>SIAM journal on matrix analysis and applications</title><description>We consider the behavior of the GMRES method for solving a linear system $Ax = b$ when $A$ is singular or nearly so, i.e., ill conditioned. The (near) singularity of $A$ may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular $A$, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.</description><subject>Applied mathematics</subject><subject>Laboratories</subject><subject>Linear algebra</subject><subject>Markov analysis</subject><subject>Methods</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkD1PwzAURS0EEqHwA9iiTjAE_PwZj6gqBalQicBsBfsFtUqTYidD_n0TlY3pDvfoHukScgv0AYDrx4LmRgptciOYYpybM5IANTLToNg5SaY6m_pLchXjjlJQwkBC5qu3j2WRbpr07h3LUA_3abFtfvq6DGkxxA738ZpcVGUd8eYvZ-Trefm5eMnWm9Xr4mmdOQ68y7xhPgepvz0I8A68l1DRqhxNzksPnkp0kqJXCEJLhRwo6pwJjegdo3xG5qfdQ2h_e4yd3bV9aEalNYxrRXOlRwhOkAttjAErewjbfRkGC9ROT9h_T_Aj_jdN9g</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Brown, Peter N.</creator><creator>Walker, Homer F.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>199701</creationdate><title>GMRES On (Nearly) Singular Systems</title><author>Brown, Peter N. ; Walker, Homer F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied mathematics</topic><topic>Laboratories</topic><topic>Linear algebra</topic><topic>Markov analysis</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Peter N.</creatorcontrib><creatorcontrib>Walker, Homer F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Peter N.</au><au>Walker, Homer F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMRES On (Nearly) Singular Systems</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1997-01</date><risdate>1997</risdate><volume>18</volume><issue>1</issue><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>We consider the behavior of the GMRES method for solving a linear system $Ax = b$ when $A$ is singular or nearly so, i.e., ill conditioned. The (near) singularity of $A$ may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular $A$, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895479894262339</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 1997-01, Vol.18 (1), p.37-51
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_923760867
source SIAM Journals Archive; Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global
subjects Applied mathematics
Laboratories
Linear algebra
Markov analysis
Methods
title GMRES On (Nearly) Singular Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMRES%20On%20(Nearly)%20Singular%20Systems&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Brown,%20Peter%20N.&rft.date=1997-01&rft.volume=18&rft.issue=1&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/S0895479894262339&rft_dat=%3Cproquest_cross%3E2596624731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-d92d8157bd141dc1dd51f0fa016cd5d1d05ec50ed6e14756e310e78247eedc203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923760867&rft_id=info:pmid/&rfr_iscdi=true