Loading…
A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems
n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to...
Saved in:
Published in: | SIAM journal on matrix analysis and applications 1996-04, Vol.17 (2), p.401-425 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533 |
container_end_page | 425 |
container_issue | 2 |
container_start_page | 401 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 17 |
creator | G. Sleijpen, Gerard L. Van der Vorst, Henk A. |
description | n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well. |
doi_str_mv | 10.1137/S0895479894270427 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923761434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596674561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</originalsourceid><addsrcrecordid>eNplkE1OwzAQhS0EEqFwAHYR-4Andn68rEKBoiCQgHVkO2NwlcbFTiux4w7ckJOQqOxYjGY039O80SPkHOglACuunmkpMl6IUvC0oGMdkAioyJIC8vSQRBNOJn5MTkJYUQo5FxCRah7fS-2U_fn6vpY72wbXx8sBvRzsOD3g8O7a2Dgf17ZH6eOFfcN-J7stxk_eqQ7X4ZQcGdkFPPvrM_J6s3ip7pL68XZZzetEMyiHBJksRapKSHlrDCCgLoxuQTM2_kgx0zIzqIQ0ilNquMowHfflBFuWMTYjF_u7G-8-thiGZuW2vh8tG5GyIgfO-CiCvUh7F4JH02y8XUv_2QBtpqiaf1GxX9qhW-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923761434</pqid></control><display><type>article</type><title>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>G. Sleijpen, Gerard L. ; Van der Vorst, Henk A.</creator><creatorcontrib>G. Sleijpen, Gerard L. ; Van der Vorst, Henk A.</creatorcontrib><description>n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/S0895479894270427</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Eigenvalues ; Eigenvectors ; Methods</subject><ispartof>SIAM journal on matrix analysis and applications, 1996-04, Vol.17 (2), p.401-425</ispartof><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</citedby><cites>FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923761434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3184,11687,27923,27924,36059,44362</link.rule.ids></links><search><creatorcontrib>G. Sleijpen, Gerard L.</creatorcontrib><creatorcontrib>Van der Vorst, Henk A.</creatorcontrib><title>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</title><title>SIAM journal on matrix analysis and applications</title><description>n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.</description><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Methods</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkE1OwzAQhS0EEqFwAHYR-4Andn68rEKBoiCQgHVkO2NwlcbFTiux4w7ckJOQqOxYjGY039O80SPkHOglACuunmkpMl6IUvC0oGMdkAioyJIC8vSQRBNOJn5MTkJYUQo5FxCRah7fS-2U_fn6vpY72wbXx8sBvRzsOD3g8O7a2Dgf17ZH6eOFfcN-J7stxk_eqQ7X4ZQcGdkFPPvrM_J6s3ip7pL68XZZzetEMyiHBJksRapKSHlrDCCgLoxuQTM2_kgx0zIzqIQ0ilNquMowHfflBFuWMTYjF_u7G-8-thiGZuW2vh8tG5GyIgfO-CiCvUh7F4JH02y8XUv_2QBtpqiaf1GxX9qhW-Y</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>G. Sleijpen, Gerard L.</creator><creator>Van der Vorst, Henk A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19960401</creationdate><title>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</title><author>G. Sleijpen, Gerard L. ; Van der Vorst, Henk A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>G. Sleijpen, Gerard L.</creatorcontrib><creatorcontrib>Van der Vorst, Henk A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G. Sleijpen, Gerard L.</au><au>Van der Vorst, Henk A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>17</volume><issue>2</issue><spage>401</spage><epage>425</epage><pages>401-425</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895479894270427</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 1996-04, Vol.17 (2), p.401-425 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923761434 |
source | SIAM Journals Archive; ABI/INFORM Global |
subjects | Approximation Eigenvalues Eigenvectors Methods |
title | A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Jacobi%E2%80%93Davidson%20Iteration%20Method%20for%20Linear%20Eigenvalue%20Problems&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=G.%20Sleijpen,%20Gerard%20L.&rft.date=1996-04-01&rft.volume=17&rft.issue=2&rft.spage=401&rft.epage=425&rft.pages=401-425&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/S0895479894270427&rft_dat=%3Cproquest_cross%3E2596674561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923761434&rft_id=info:pmid/&rfr_iscdi=true |