Loading…

A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems

n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 1996-04, Vol.17 (2), p.401-425
Main Authors: G. Sleijpen, Gerard L., Van der Vorst, Henk A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533
cites cdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533
container_end_page 425
container_issue 2
container_start_page 401
container_title SIAM journal on matrix analysis and applications
container_volume 17
creator G. Sleijpen, Gerard L.
Van der Vorst, Henk A.
description n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.
doi_str_mv 10.1137/S0895479894270427
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923761434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596674561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</originalsourceid><addsrcrecordid>eNplkE1OwzAQhS0EEqFwAHYR-4Andn68rEKBoiCQgHVkO2NwlcbFTiux4w7ckJOQqOxYjGY039O80SPkHOglACuunmkpMl6IUvC0oGMdkAioyJIC8vSQRBNOJn5MTkJYUQo5FxCRah7fS-2U_fn6vpY72wbXx8sBvRzsOD3g8O7a2Dgf17ZH6eOFfcN-J7stxk_eqQ7X4ZQcGdkFPPvrM_J6s3ip7pL68XZZzetEMyiHBJksRapKSHlrDCCgLoxuQTM2_kgx0zIzqIQ0ilNquMowHfflBFuWMTYjF_u7G-8-thiGZuW2vh8tG5GyIgfO-CiCvUh7F4JH02y8XUv_2QBtpqiaf1GxX9qhW-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923761434</pqid></control><display><type>article</type><title>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>G. Sleijpen, Gerard L. ; Van der Vorst, Henk A.</creator><creatorcontrib>G. Sleijpen, Gerard L. ; Van der Vorst, Henk A.</creatorcontrib><description>n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/S0895479894270427</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Eigenvalues ; Eigenvectors ; Methods</subject><ispartof>SIAM journal on matrix analysis and applications, 1996-04, Vol.17 (2), p.401-425</ispartof><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</citedby><cites>FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923761434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3184,11687,27923,27924,36059,44362</link.rule.ids></links><search><creatorcontrib>G. Sleijpen, Gerard L.</creatorcontrib><creatorcontrib>Van der Vorst, Henk A.</creatorcontrib><title>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</title><title>SIAM journal on matrix analysis and applications</title><description>n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.</description><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Methods</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkE1OwzAQhS0EEqFwAHYR-4Andn68rEKBoiCQgHVkO2NwlcbFTiux4w7ckJOQqOxYjGY039O80SPkHOglACuunmkpMl6IUvC0oGMdkAioyJIC8vSQRBNOJn5MTkJYUQo5FxCRah7fS-2U_fn6vpY72wbXx8sBvRzsOD3g8O7a2Dgf17ZH6eOFfcN-J7stxk_eqQ7X4ZQcGdkFPPvrM_J6s3ip7pL68XZZzetEMyiHBJksRapKSHlrDCCgLoxuQTM2_kgx0zIzqIQ0ilNquMowHfflBFuWMTYjF_u7G-8-thiGZuW2vh8tG5GyIgfO-CiCvUh7F4JH02y8XUv_2QBtpqiaf1GxX9qhW-Y</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>G. Sleijpen, Gerard L.</creator><creator>Van der Vorst, Henk A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19960401</creationdate><title>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</title><author>G. Sleijpen, Gerard L. ; Van der Vorst, Henk A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>G. Sleijpen, Gerard L.</creatorcontrib><creatorcontrib>Van der Vorst, Henk A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G. Sleijpen, Gerard L.</au><au>Van der Vorst, Henk A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>17</volume><issue>2</issue><spage>401</spage><epage>425</epage><pages>401-425</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>n this paper we propose a new method for the iterative computation of a few of the extremal. eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based on an old and almost unknown method of Jacobi. Jacobi's approach, combined with Davidson's method, leads to a new method that has improved convergence properties and that may be used for general matrices. We also propose a variant of the new method that may be useful for the computation of nonextremal eigenvalues as well.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895479894270427</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 1996-04, Vol.17 (2), p.401-425
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_923761434
source SIAM Journals Archive; ABI/INFORM Global
subjects Approximation
Eigenvalues
Eigenvectors
Methods
title A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Jacobi%E2%80%93Davidson%20Iteration%20Method%20for%20Linear%20Eigenvalue%20Problems&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=G.%20Sleijpen,%20Gerard%20L.&rft.date=1996-04-01&rft.volume=17&rft.issue=2&rft.spage=401&rft.epage=425&rft.pages=401-425&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/S0895479894270427&rft_dat=%3Cproquest_cross%3E2596674561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-e3a892b8124dff1e1ec7fcd1c331620e5ca5feb9afb400f4b5e262081620d3533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923761434&rft_id=info:pmid/&rfr_iscdi=true