Loading…

Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions

The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }}...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on mathematical analysis 1993-05, Vol.24 (3), p.557-570
Main Authors: ASHBAUGH, M. S, BENGURIA, R. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3
cites cdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3
container_end_page 570
container_issue 3
container_start_page 557
container_title SIAM journal on mathematical analysis
container_volume 24
creator ASHBAUGH, M. S
BENGURIA, R. D
description The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).
doi_str_mv 10.1137/0524034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924485132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598504331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB_4F4IIrkbvnZuZTpZSfEGpG7sekkyiKdOkJp2K_96RFldn83HO4WPsCuEOkab3UJUCSByxCYKsiilW4phNAKguUCCcsrOcVwBYCwkTtlgGv7Mpq57rOIQucxcT335a3sdvbv2HDTvVDzbz6PjCDmsVAp-rTa-MVyFzH_iCd35tQ_Yx5At24lSf7eUhz9ny6fF99lLM355fZw_zwpSI20LUYIUWDrHRoIUgQdqUVovOQuWcNUCka93ZrmmkcVpOTeOUaKiiKUqydM6u972bFL_Gd9t2FYcUxslWlkI0FVI5Qrd7yKSYc7Ku3SS_VumnRWj_XLUHVyN5c6hT2ajeJRWMz_84SSplRfQLPp1new</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924485132</pqid></control><display><type>article</type><title>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</title><source>ABI/INFORM global</source><source>SIAM美国工业和应用数学学会电子期刊 - Locus过刊全文数据库</source><creator>ASHBAUGH, M. S ; BENGURIA, R. D</creator><creatorcontrib>ASHBAUGH, M. S ; BENGURIA, R. D</creatorcontrib><description>The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0524034</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Exact sciences and technology ; Inequality ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>SIAM journal on mathematical analysis, 1993-05, Vol.24 (3), p.557-570</ispartof><rights>1994 INIST-CNRS</rights><rights>[Copyright] © 1993 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</citedby><cites>FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/924485132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3932953$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ASHBAUGH, M. S</creatorcontrib><creatorcontrib>BENGURIA, R. D</creatorcontrib><title>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</title><title>SIAM journal on mathematical analysis</title><description>The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).</description><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kEtLAzEUhYMoWB_4F4IIrkbvnZuZTpZSfEGpG7sekkyiKdOkJp2K_96RFldn83HO4WPsCuEOkab3UJUCSByxCYKsiilW4phNAKguUCCcsrOcVwBYCwkTtlgGv7Mpq57rOIQucxcT335a3sdvbv2HDTvVDzbz6PjCDmsVAp-rTa-MVyFzH_iCd35tQ_Yx5At24lSf7eUhz9ny6fF99lLM355fZw_zwpSI20LUYIUWDrHRoIUgQdqUVovOQuWcNUCka93ZrmmkcVpOTeOUaKiiKUqydM6u972bFL_Gd9t2FYcUxslWlkI0FVI5Qrd7yKSYc7Ku3SS_VumnRWj_XLUHVyN5c6hT2ajeJRWMz_84SSplRfQLPp1new</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>ASHBAUGH, M. S</creator><creator>BENGURIA, R. D</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19930501</creationdate><title>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</title><author>ASHBAUGH, M. S ; BENGURIA, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASHBAUGH, M. S</creatorcontrib><creatorcontrib>BENGURIA, R. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASHBAUGH, M. S</au><au>BENGURIA, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>24</volume><issue>3</issue><spage>557</spage><epage>570</epage><pages>557-570</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0524034</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1993-05, Vol.24 (3), p.557-570
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924485132
source ABI/INFORM global; SIAM美国工业和应用数学学会电子期刊 - Locus过刊全文数据库
subjects Eigenvalues
Exact sciences and technology
Inequality
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
title Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20bounds%20for%20the%20low%20eigenvalues%20of%20Neumann%20Laplacians%20in%20N%20dimensions&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=ASHBAUGH,%20M.%20S&rft.date=1993-05-01&rft.volume=24&rft.issue=3&rft.spage=557&rft.epage=570&rft.pages=557-570&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0524034&rft_dat=%3Cproquest_cross%3E2598504331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=924485132&rft_id=info:pmid/&rfr_iscdi=true