Loading…
Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions
The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }}...
Saved in:
Published in: | SIAM journal on mathematical analysis 1993-05, Vol.24 (3), p.557-570 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3 |
container_end_page | 570 |
container_issue | 3 |
container_start_page | 557 |
container_title | SIAM journal on mathematical analysis |
container_volume | 24 |
creator | ASHBAUGH, M. S BENGURIA, R. D |
description | The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$). |
doi_str_mv | 10.1137/0524034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924485132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598504331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB_4F4IIrkbvnZuZTpZSfEGpG7sekkyiKdOkJp2K_96RFldn83HO4WPsCuEOkab3UJUCSByxCYKsiilW4phNAKguUCCcsrOcVwBYCwkTtlgGv7Mpq57rOIQucxcT335a3sdvbv2HDTvVDzbz6PjCDmsVAp-rTa-MVyFzH_iCd35tQ_Yx5At24lSf7eUhz9ny6fF99lLM355fZw_zwpSI20LUYIUWDrHRoIUgQdqUVovOQuWcNUCka93ZrmmkcVpOTeOUaKiiKUqydM6u972bFL_Gd9t2FYcUxslWlkI0FVI5Qrd7yKSYc7Ku3SS_VumnRWj_XLUHVyN5c6hT2ajeJRWMz_84SSplRfQLPp1new</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924485132</pqid></control><display><type>article</type><title>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</title><source>ABI/INFORM global</source><source>SIAM美国工业和应用数学学会电子期刊 - Locus过刊全文数据库</source><creator>ASHBAUGH, M. S ; BENGURIA, R. D</creator><creatorcontrib>ASHBAUGH, M. S ; BENGURIA, R. D</creatorcontrib><description>The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0524034</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Exact sciences and technology ; Inequality ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>SIAM journal on mathematical analysis, 1993-05, Vol.24 (3), p.557-570</ispartof><rights>1994 INIST-CNRS</rights><rights>[Copyright] © 1993 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</citedby><cites>FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/924485132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3932953$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ASHBAUGH, M. S</creatorcontrib><creatorcontrib>BENGURIA, R. D</creatorcontrib><title>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</title><title>SIAM journal on mathematical analysis</title><description>The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).</description><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kEtLAzEUhYMoWB_4F4IIrkbvnZuZTpZSfEGpG7sekkyiKdOkJp2K_96RFldn83HO4WPsCuEOkab3UJUCSByxCYKsiilW4phNAKguUCCcsrOcVwBYCwkTtlgGv7Mpq57rOIQucxcT335a3sdvbv2HDTvVDzbz6PjCDmsVAp-rTa-MVyFzH_iCd35tQ_Yx5At24lSf7eUhz9ny6fF99lLM355fZw_zwpSI20LUYIUWDrHRoIUgQdqUVovOQuWcNUCka93ZrmmkcVpOTeOUaKiiKUqydM6u972bFL_Gd9t2FYcUxslWlkI0FVI5Qrd7yKSYc7Ku3SS_VumnRWj_XLUHVyN5c6hT2ajeJRWMz_84SSplRfQLPp1new</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>ASHBAUGH, M. S</creator><creator>BENGURIA, R. D</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19930501</creationdate><title>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</title><author>ASHBAUGH, M. S ; BENGURIA, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASHBAUGH, M. S</creatorcontrib><creatorcontrib>BENGURIA, R. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASHBAUGH, M. S</au><au>BENGURIA, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>24</volume><issue>3</issue><spage>557</spage><epage>570</epage><pages>557-570</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The authors consider bounds on the Neumann eigenvalues of the Laplacian on domains in $I\mathbb{R}^n $ in the light of their recent results on Dirichlet eigenvalues, in particular, their proof of the Payne-Polya-Weinberger conjecture via spherical rearrangement. They prove the bound ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geq {A / {2\pi }}$ for the first two nonzero Neumann eigenvalues for an arbitrary bounded domain $\Omega $ in two dimensions and also the stronger (and optimal) bound $\mu _2 \leq \pi (j'_{1,1} )^{{2 / A}} $ for domains having a 4-fold rotational symmetry. (Here $(j'_{1,1} ) \approx 1.84118$ denotes the first positive zero of the derivative of the Bessel function $J_1 (x)$ and $A$ is the area of the domain $\Omega $.) The authors also obtain analogues of these results for domains in $I\mathbb{R}^n $. Previous results in this vein are due to Szego, who proved ${{\mu _1 \leq \pi (j'_{1,1} )^2 } / A}$ and ${1 / {\mu _1 }} + {1 / {\mu _2 }} \geqslant {{2A} / {\pi (j'_{1,1} )^2 }}$ for simply connected domains in $I\mathbb{R}^2 $, and to Weinberger, who proved the general result$\mu _1 \leq ({{C_n } / {|\Omega |}})^{{2 / n}} p_{{n / {2,1}}}^2 $ for arbitrary domains in $I\mathbb{R}^n $ (here ${{C_n = \pi ^{{n / 2}} } {{C_n = \pi ^{{n / 2}} } {\Gamma ({n / {2 + 1}})}}} $$=$ volume of the unit ball in $I\mathbb{R}^n $, and $p_{\nu ,k} $ denotes the $k$th positive zero of the derivative of $x^{1 - \nu } J_\nu (x)$, where $J_\nu (x)$ represents the standard Bessel function of the first kind of order $v$).</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0524034</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 1993-05, Vol.24 (3), p.557-570 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_924485132 |
source | ABI/INFORM global; SIAM美国工业和应用数学学会电子期刊 - Locus过刊全文数据库 |
subjects | Eigenvalues Exact sciences and technology Inequality Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use |
title | Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20bounds%20for%20the%20low%20eigenvalues%20of%20Neumann%20Laplacians%20in%20N%20dimensions&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=ASHBAUGH,%20M.%20S&rft.date=1993-05-01&rft.volume=24&rft.issue=3&rft.spage=557&rft.epage=570&rft.pages=557-570&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0524034&rft_dat=%3Cproquest_cross%3E2598504331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c211t-460e4b4f118b0b44343bc2eb4de05ffec033b6bded889cfb97c8fa483537193e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=924485132&rft_id=info:pmid/&rfr_iscdi=true |