Loading…
The large deformation of nonlinearly elastic tubes in two-dimensional flows
This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at...
Saved in:
Published in: | SIAM journal on mathematical analysis 1991-09, Vol.22 (5), p.1193-1221 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3 |
container_end_page | 1221 |
container_issue | 5 |
container_start_page | 1193 |
container_title | SIAM journal on mathematical analysis |
container_volume | 22 |
creator | LANZA DE CRISTOFORIS, M ANTMAN, S. S |
description | This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles. |
doi_str_mv | 10.1137/0522078 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924630201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598529181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</originalsourceid><addsrcrecordid>eNo90EFLAzEUBOAgCtYq_oUggqfVvORlN3uUYlUseOl9yb4muiXd1GRL6b93pcXTXD6GYRi7BfEIoKonoaUUlTljExC1LirQeM4mQqiyAARxya5yXgsBJdZiwj6W344Hm74cXzkf08YOXex59LyPfeh6Z1M4cBdsHjriw651mXc9H_axWHUb1-dR28B9iPt8zS68DdndnHLKlvOX5eytWHy-vs-eFwVJCVC0vrRCtSRRaU-EDsloIiM1YeW1QUNKGyMRjJSEFlCVoB1J3WokUlN2d6zdpvizc3lo1nGXxhW5qSWWSkgBI3o4Ikox5-R8s03dxqZDA6L5-6k5_TTK-1OdzWSDT7anLv9z1FgbUalfTuplgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924630201</pqid></control><display><type>article</type><title>The large deformation of nonlinearly elastic tubes in two-dimensional flows</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>LANZA DE CRISTOFORIS, M ; ANTMAN, S. S</creator><creatorcontrib>LANZA DE CRISTOFORIS, M ; ANTMAN, S. S</creatorcontrib><description>This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0522078</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Deformation ; Equilibrium ; Exact sciences and technology ; Mathematical methods in physics ; Physics ; Velocity</subject><ispartof>SIAM journal on mathematical analysis, 1991-09, Vol.22 (5), p.1193-1221</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</citedby><cites>FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/924630201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4549807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LANZA DE CRISTOFORIS, M</creatorcontrib><creatorcontrib>ANTMAN, S. S</creatorcontrib><title>The large deformation of nonlinearly elastic tubes in two-dimensional flows</title><title>SIAM journal on mathematical analysis</title><description>This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.</description><subject>Deformation</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Velocity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90EFLAzEUBOAgCtYq_oUggqfVvORlN3uUYlUseOl9yb4muiXd1GRL6b93pcXTXD6GYRi7BfEIoKonoaUUlTljExC1LirQeM4mQqiyAARxya5yXgsBJdZiwj6W344Hm74cXzkf08YOXex59LyPfeh6Z1M4cBdsHjriw651mXc9H_axWHUb1-dR28B9iPt8zS68DdndnHLKlvOX5eytWHy-vs-eFwVJCVC0vrRCtSRRaU-EDsloIiM1YeW1QUNKGyMRjJSEFlCVoB1J3WokUlN2d6zdpvizc3lo1nGXxhW5qSWWSkgBI3o4Ikox5-R8s03dxqZDA6L5-6k5_TTK-1OdzWSDT7anLv9z1FgbUalfTuplgg</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>LANZA DE CRISTOFORIS, M</creator><creator>ANTMAN, S. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19910901</creationdate><title>The large deformation of nonlinearly elastic tubes in two-dimensional flows</title><author>LANZA DE CRISTOFORIS, M ; ANTMAN, S. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Deformation</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LANZA DE CRISTOFORIS, M</creatorcontrib><creatorcontrib>ANTMAN, S. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LANZA DE CRISTOFORIS, M</au><au>ANTMAN, S. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The large deformation of nonlinearly elastic tubes in two-dimensional flows</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1991-09-01</date><risdate>1991</risdate><volume>22</volume><issue>5</issue><spage>1193</spage><epage>1221</epage><pages>1193-1221</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0522078</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 1991-09, Vol.22 (5), p.1193-1221 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_924630201 |
source | SIAM Journals Archive; ABI/INFORM Global |
subjects | Deformation Equilibrium Exact sciences and technology Mathematical methods in physics Physics Velocity |
title | The large deformation of nonlinearly elastic tubes in two-dimensional flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20large%20deformation%20of%20nonlinearly%20elastic%20tubes%20in%20two-dimensional%20flows&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=LANZA%20DE%20CRISTOFORIS,%20M&rft.date=1991-09-01&rft.volume=22&rft.issue=5&rft.spage=1193&rft.epage=1221&rft.pages=1193-1221&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0522078&rft_dat=%3Cproquest_cross%3E2598529181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=924630201&rft_id=info:pmid/&rfr_iscdi=true |