Loading…

The large deformation of nonlinearly elastic tubes in two-dimensional flows

This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on mathematical analysis 1991-09, Vol.22 (5), p.1193-1221
Main Authors: LANZA DE CRISTOFORIS, M, ANTMAN, S. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3
cites cdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3
container_end_page 1221
container_issue 5
container_start_page 1193
container_title SIAM journal on mathematical analysis
container_volume 22
creator LANZA DE CRISTOFORIS, M
ANTMAN, S. S
description This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.
doi_str_mv 10.1137/0522078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924630201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598529181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</originalsourceid><addsrcrecordid>eNo90EFLAzEUBOAgCtYq_oUggqfVvORlN3uUYlUseOl9yb4muiXd1GRL6b93pcXTXD6GYRi7BfEIoKonoaUUlTljExC1LirQeM4mQqiyAARxya5yXgsBJdZiwj6W344Hm74cXzkf08YOXex59LyPfeh6Z1M4cBdsHjriw651mXc9H_axWHUb1-dR28B9iPt8zS68DdndnHLKlvOX5eytWHy-vs-eFwVJCVC0vrRCtSRRaU-EDsloIiM1YeW1QUNKGyMRjJSEFlCVoB1J3WokUlN2d6zdpvizc3lo1nGXxhW5qSWWSkgBI3o4Ikox5-R8s03dxqZDA6L5-6k5_TTK-1OdzWSDT7anLv9z1FgbUalfTuplgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924630201</pqid></control><display><type>article</type><title>The large deformation of nonlinearly elastic tubes in two-dimensional flows</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>LANZA DE CRISTOFORIS, M ; ANTMAN, S. S</creator><creatorcontrib>LANZA DE CRISTOFORIS, M ; ANTMAN, S. S</creatorcontrib><description>This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0522078</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Deformation ; Equilibrium ; Exact sciences and technology ; Mathematical methods in physics ; Physics ; Velocity</subject><ispartof>SIAM journal on mathematical analysis, 1991-09, Vol.22 (5), p.1193-1221</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</citedby><cites>FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/924630201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4549807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LANZA DE CRISTOFORIS, M</creatorcontrib><creatorcontrib>ANTMAN, S. S</creatorcontrib><title>The large deformation of nonlinearly elastic tubes in two-dimensional flows</title><title>SIAM journal on mathematical analysis</title><description>This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.</description><subject>Deformation</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Velocity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90EFLAzEUBOAgCtYq_oUggqfVvORlN3uUYlUseOl9yb4muiXd1GRL6b93pcXTXD6GYRi7BfEIoKonoaUUlTljExC1LirQeM4mQqiyAARxya5yXgsBJdZiwj6W344Hm74cXzkf08YOXex59LyPfeh6Z1M4cBdsHjriw651mXc9H_axWHUb1-dR28B9iPt8zS68DdndnHLKlvOX5eytWHy-vs-eFwVJCVC0vrRCtSRRaU-EDsloIiM1YeW1QUNKGyMRjJSEFlCVoB1J3WokUlN2d6zdpvizc3lo1nGXxhW5qSWWSkgBI3o4Ikox5-R8s03dxqZDA6L5-6k5_TTK-1OdzWSDT7anLv9z1FgbUalfTuplgg</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>LANZA DE CRISTOFORIS, M</creator><creator>ANTMAN, S. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19910901</creationdate><title>The large deformation of nonlinearly elastic tubes in two-dimensional flows</title><author>LANZA DE CRISTOFORIS, M ; ANTMAN, S. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Deformation</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LANZA DE CRISTOFORIS, M</creatorcontrib><creatorcontrib>ANTMAN, S. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LANZA DE CRISTOFORIS, M</au><au>ANTMAN, S. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The large deformation of nonlinearly elastic tubes in two-dimensional flows</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1991-09-01</date><risdate>1991</risdate><volume>22</volume><issue>5</issue><spage>1193</spage><epage>1221</epage><pages>1193-1221</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes (rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity $U$ and pressure $P$ at infinity. The deformation of the tubes is described by a geometrically exact theory of rods. The parameters $U$ and $P$ and the deformed shape of the ring uniquely determine the velocity field of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends continuously and compactly on the function describing the shape. The pressure field on the ring, depending on $U$, $P$, and the velocity field on the tube, is substituted into the equilibrium equations for the tube, yielding a system of ordinary functional-differential equations. These are converted into a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from conformal mapping theory are used to handle serious technical difficulties with regularity, which apparently do not arise in the study of flows past rigid obstacles.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0522078</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1991-09, Vol.22 (5), p.1193-1221
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924630201
source SIAM Journals Archive; ABI/INFORM Global
subjects Deformation
Equilibrium
Exact sciences and technology
Mathematical methods in physics
Physics
Velocity
title The large deformation of nonlinearly elastic tubes in two-dimensional flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20large%20deformation%20of%20nonlinearly%20elastic%20tubes%20in%20two-dimensional%20flows&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=LANZA%20DE%20CRISTOFORIS,%20M&rft.date=1991-09-01&rft.volume=22&rft.issue=5&rft.spage=1193&rft.epage=1221&rft.pages=1193-1221&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0522078&rft_dat=%3Cproquest_cross%3E2598529181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2211-bf6a03bc2435fcc4e4c85cc825c47f5848c3588241822c4a143615ec25b54cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=924630201&rft_id=info:pmid/&rfr_iscdi=true