Loading…

On the bifurcation of radially symmetric steady-state solutions arising in population genetics

This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on mathematical analysis 1991-03, Vol.22 (2), p.400-413
Main Authors: BROWN, K. J, TERTIKAS, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323
cites cdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323
container_end_page 413
container_issue 2
container_start_page 400
container_title SIAM journal on mathematical analysis
container_volume 22
creator BROWN, K. J
TERTIKAS, A
description This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.
doi_str_mv 10.1137/0522026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924654562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598551691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</originalsourceid><addsrcrecordid>eNo90EtLxDAUBeAgCo6j-BeCCK6qebVpljL4goHZ6NZymyZjhk5bc9NF_70dZnB17-LjHDiE3HL2yLnUTywXgonijCw4M3mmea7OyYIxWWRccXZJrhB3jPFCGbYg35uOph9H6-DHaCGFvqO9pxGaAG07UZz2e5disBSTg2bKMEFyFPt2PFikEAOGbktDR4d-GNtjxNZ1LgWL1-TCQ4vu5nSX5Ov15XP1nq03bx-r53VmuShEVkKpueTWNBqM9MLL0nPf1HVjVZ1bK3JR1tJoCdYr67zUSpdGwPwL76WQS3J3zB1i_zs6TNWuH2M3V1ZGqCJXeXFAD0dkY48Yna-GGPYQp4qz6rBdddpulvenOEALrY_Q2YD_XKkZKS3_AB_sbpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924654562</pqid></control><display><type>article</type><title>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global (ProQuest)</source><creator>BROWN, K. J ; TERTIKAS, A</creator><creatorcontrib>BROWN, K. J ; TERTIKAS, A</creatorcontrib><description>This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0522026</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boundary conditions ; Exact sciences and technology ; Mathematical methods in physics ; Ordinary differential equations ; Physics ; Population genetics ; Symmetry</subject><ispartof>SIAM journal on mathematical analysis, 1991-03, Vol.22 (2), p.400-413</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</citedby><cites>FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/924654562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3184,11687,27923,27924,36059,44362</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4402647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BROWN, K. J</creatorcontrib><creatorcontrib>TERTIKAS, A</creatorcontrib><title>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</title><title>SIAM journal on mathematical analysis</title><description>This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Population genetics</subject><subject>Symmetry</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90EtLxDAUBeAgCo6j-BeCCK6qebVpljL4goHZ6NZymyZjhk5bc9NF_70dZnB17-LjHDiE3HL2yLnUTywXgonijCw4M3mmea7OyYIxWWRccXZJrhB3jPFCGbYg35uOph9H6-DHaCGFvqO9pxGaAG07UZz2e5disBSTg2bKMEFyFPt2PFikEAOGbktDR4d-GNtjxNZ1LgWL1-TCQ4vu5nSX5Ov15XP1nq03bx-r53VmuShEVkKpueTWNBqM9MLL0nPf1HVjVZ1bK3JR1tJoCdYr67zUSpdGwPwL76WQS3J3zB1i_zs6TNWuH2M3V1ZGqCJXeXFAD0dkY48Yna-GGPYQp4qz6rBdddpulvenOEALrY_Q2YD_XKkZKS3_AB_sbpY</recordid><startdate>19910301</startdate><enddate>19910301</enddate><creator>BROWN, K. J</creator><creator>TERTIKAS, A</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19910301</creationdate><title>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</title><author>BROWN, K. J ; TERTIKAS, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Population genetics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BROWN, K. J</creatorcontrib><creatorcontrib>TERTIKAS, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BROWN, K. J</au><au>TERTIKAS, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1991-03-01</date><risdate>1991</risdate><volume>22</volume><issue>2</issue><spage>400</spage><epage>413</epage><pages>400-413</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0522026</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1991-03, Vol.22 (2), p.400-413
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924654562
source SIAM Journals Archive; ABI/INFORM Global (ProQuest)
subjects Applied mathematics
Boundary conditions
Exact sciences and technology
Mathematical methods in physics
Ordinary differential equations
Physics
Population genetics
Symmetry
title On the bifurcation of radially symmetric steady-state solutions arising in population genetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20bifurcation%20of%20radially%20symmetric%20steady-state%20solutions%20arising%20in%20population%20genetics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=BROWN,%20K.%20J&rft.date=1991-03-01&rft.volume=22&rft.issue=2&rft.spage=400&rft.epage=413&rft.pages=400-413&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0522026&rft_dat=%3Cproquest_cross%3E2598551691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=924654562&rft_id=info:pmid/&rfr_iscdi=true