Loading…
On the bifurcation of radially symmetric steady-state solutions arising in population genetics
This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and...
Saved in:
Published in: | SIAM journal on mathematical analysis 1991-03, Vol.22 (2), p.400-413 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323 |
---|---|
cites | cdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323 |
container_end_page | 413 |
container_issue | 2 |
container_start_page | 400 |
container_title | SIAM journal on mathematical analysis |
container_volume | 22 |
creator | BROWN, K. J TERTIKAS, A |
description | This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage. |
doi_str_mv | 10.1137/0522026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924654562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598551691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</originalsourceid><addsrcrecordid>eNo90EtLxDAUBeAgCo6j-BeCCK6qebVpljL4goHZ6NZymyZjhk5bc9NF_70dZnB17-LjHDiE3HL2yLnUTywXgonijCw4M3mmea7OyYIxWWRccXZJrhB3jPFCGbYg35uOph9H6-DHaCGFvqO9pxGaAG07UZz2e5disBSTg2bKMEFyFPt2PFikEAOGbktDR4d-GNtjxNZ1LgWL1-TCQ4vu5nSX5Ov15XP1nq03bx-r53VmuShEVkKpueTWNBqM9MLL0nPf1HVjVZ1bK3JR1tJoCdYr67zUSpdGwPwL76WQS3J3zB1i_zs6TNWuH2M3V1ZGqCJXeXFAD0dkY48Yna-GGPYQp4qz6rBdddpulvenOEALrY_Q2YD_XKkZKS3_AB_sbpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924654562</pqid></control><display><type>article</type><title>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global (ProQuest)</source><creator>BROWN, K. J ; TERTIKAS, A</creator><creatorcontrib>BROWN, K. J ; TERTIKAS, A</creatorcontrib><description>This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0522026</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boundary conditions ; Exact sciences and technology ; Mathematical methods in physics ; Ordinary differential equations ; Physics ; Population genetics ; Symmetry</subject><ispartof>SIAM journal on mathematical analysis, 1991-03, Vol.22 (2), p.400-413</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</citedby><cites>FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/924654562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3184,11687,27923,27924,36059,44362</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4402647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BROWN, K. J</creatorcontrib><creatorcontrib>TERTIKAS, A</creatorcontrib><title>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</title><title>SIAM journal on mathematical analysis</title><description>This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Population genetics</subject><subject>Symmetry</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90EtLxDAUBeAgCo6j-BeCCK6qebVpljL4goHZ6NZymyZjhk5bc9NF_70dZnB17-LjHDiE3HL2yLnUTywXgonijCw4M3mmea7OyYIxWWRccXZJrhB3jPFCGbYg35uOph9H6-DHaCGFvqO9pxGaAG07UZz2e5disBSTg2bKMEFyFPt2PFikEAOGbktDR4d-GNtjxNZ1LgWL1-TCQ4vu5nSX5Ov15XP1nq03bx-r53VmuShEVkKpueTWNBqM9MLL0nPf1HVjVZ1bK3JR1tJoCdYr67zUSpdGwPwL76WQS3J3zB1i_zs6TNWuH2M3V1ZGqCJXeXFAD0dkY48Yna-GGPYQp4qz6rBdddpulvenOEALrY_Q2YD_XKkZKS3_AB_sbpY</recordid><startdate>19910301</startdate><enddate>19910301</enddate><creator>BROWN, K. J</creator><creator>TERTIKAS, A</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19910301</creationdate><title>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</title><author>BROWN, K. J ; TERTIKAS, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Population genetics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BROWN, K. J</creatorcontrib><creatorcontrib>TERTIKAS, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BROWN, K. J</au><au>TERTIKAS, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the bifurcation of radially symmetric steady-state solutions arising in population genetics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1991-03-01</date><risdate>1991</risdate><volume>22</volume><issue>2</issue><spage>400</spage><epage>413</epage><pages>400-413</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>This paper considers a semilinear elliptic equation which arises in a selection-migration model in population genetics, involving two alleles $A_1$ and $A_2$ such that $A_1$ is at an advantage over $A_2$ in certain subregions and at a disadvantage in others. The system is studied on all of $R^n$ and is assumed to possess radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential equation are investigated and, by using shooting method type arguments, results are obtained on the bifurcation of solutions from the trivial solutions corresponding to the cases where $A_1$ or $A_2$ is extinct. The nature of the results obtained varies according to whether $A_1$ or $A_2$ has an overall advantage.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0522026</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 1991-03, Vol.22 (2), p.400-413 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_924654562 |
source | SIAM Journals Archive; ABI/INFORM Global (ProQuest) |
subjects | Applied mathematics Boundary conditions Exact sciences and technology Mathematical methods in physics Ordinary differential equations Physics Population genetics Symmetry |
title | On the bifurcation of radially symmetric steady-state solutions arising in population genetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20bifurcation%20of%20radially%20symmetric%20steady-state%20solutions%20arising%20in%20population%20genetics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=BROWN,%20K.%20J&rft.date=1991-03-01&rft.volume=22&rft.issue=2&rft.spage=400&rft.epage=413&rft.pages=400-413&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0522026&rft_dat=%3Cproquest_cross%3E2598551691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1262-8a87131c9d7a93f2f38f1fdbbdc4b5cc2528b3973acf4cef3747892a4ce2ff323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=924654562&rft_id=info:pmid/&rfr_iscdi=true |