Loading…
What costs are minimized by Huffman trees?
We characterize those functions on weighted trees that are minimized at Huffman trees and those that are minimized at trees with the same level sequence as a Huffman tree. An important tool is a set of inequalities between weights of subtrees shown to be characteristic for Huffman trees. A byproduct...
Saved in:
Published in: | SIAM journal on discrete mathematics 2005, Vol.19 (1), p.46-68 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-73e5295e535a33c7dc5383e344b7ccf9961d332ce61af065f39c21d2db7715313 |
container_end_page | 68 |
container_issue | 1 |
container_start_page | 46 |
container_title | SIAM journal on discrete mathematics |
container_volume | 19 |
creator | FORST, Gunnar THORUP, Anders |
description | We characterize those functions on weighted trees that are minimized at Huffman trees and those that are minimized at trees with the same level sequence as a Huffman tree. An important tool is a set of inequalities between weights of subtrees shown to be characteristic for Huffman trees. A byproduct is an algorithm transforming an arbitrary weighted tree into a Huffman tree; for a given tree, the maximal number of steps that may be taken by this algorithm is a numerical measure of how far the tree is from being a Huffman tree. |
doi_str_mv | 10.1137/S0895480103421725 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925645549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599592461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-73e5295e535a33c7dc5383e344b7ccf9961d332ce61af065f39c21d2db7715313</originalsourceid><addsrcrecordid>eNplkEFLxDAUhIMoWFd_gLcieBGqeXl5zeYksqgrLHhQ8VjSNMEu23ZN2sP6623ZBQ-e5jDzzcAwdgn8FgDV3Rufa5JzDhylACXoiCXANWUKZH7MksnOJv-UncW45hykBErYzeeX6VPbxT6mJri0qdu6qX9clZa7dDl435g27YNz8f6cnXizie7ioDP28fT4vlhmq9fnl8XDKrOCZJ8pdCQ0OUIyiFZVlnCODqUslbVe6xwqRGFdDsbznDxqK6ASVakUEALO2NW-dxu678HFvlh3Q2jHyUILyiWR1GMI9iEbuhiD88U21I0JuwJ4MT1S_HtkZK4PxSZas_HBtLaOf6Airrjm-AvV9F1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925645549</pqid></control><display><type>article</type><title>What costs are minimized by Huffman trees?</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>FORST, Gunnar ; THORUP, Anders</creator><creatorcontrib>FORST, Gunnar ; THORUP, Anders</creatorcontrib><description>We characterize those functions on weighted trees that are minimized at Huffman trees and those that are minimized at trees with the same level sequence as a Huffman tree. An important tool is a set of inequalities between weights of subtrees shown to be characteristic for Huffman trees. A byproduct is an algorithm transforming an arbitrary weighted tree into a Huffman tree; for a given tree, the maximal number of steps that may be taken by this algorithm is a numerical measure of how far the tree is from being a Huffman tree.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/S0895480103421725</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Coding, codes ; Combinatorics ; Combinatorics. Ordered structures ; Costs ; Exact sciences and technology ; Graph theory ; Information, signal and communications theory ; Mathematics ; Sciences and techniques of general use ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>SIAM journal on discrete mathematics, 2005, Vol.19 (1), p.46-68</ispartof><rights>2006 INIST-CNRS</rights><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-73e5295e535a33c7dc5383e344b7ccf9961d332ce61af065f39c21d2db7715313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/925645549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3171,4009,11668,27902,27903,27904,36039,44342</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17507090$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FORST, Gunnar</creatorcontrib><creatorcontrib>THORUP, Anders</creatorcontrib><title>What costs are minimized by Huffman trees?</title><title>SIAM journal on discrete mathematics</title><description>We characterize those functions on weighted trees that are minimized at Huffman trees and those that are minimized at trees with the same level sequence as a Huffman tree. An important tool is a set of inequalities between weights of subtrees shown to be characteristic for Huffman trees. A byproduct is an algorithm transforming an arbitrary weighted tree into a Huffman tree; for a given tree, the maximal number of steps that may be taken by this algorithm is a numerical measure of how far the tree is from being a Huffman tree.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Coding, codes</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Costs</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkEFLxDAUhIMoWFd_gLcieBGqeXl5zeYksqgrLHhQ8VjSNMEu23ZN2sP6623ZBQ-e5jDzzcAwdgn8FgDV3Rufa5JzDhylACXoiCXANWUKZH7MksnOJv-UncW45hykBErYzeeX6VPbxT6mJri0qdu6qX9clZa7dDl435g27YNz8f6cnXizie7ioDP28fT4vlhmq9fnl8XDKrOCZJ8pdCQ0OUIyiFZVlnCODqUslbVe6xwqRGFdDsbznDxqK6ASVakUEALO2NW-dxu678HFvlh3Q2jHyUILyiWR1GMI9iEbuhiD88U21I0JuwJ4MT1S_HtkZK4PxSZas_HBtLaOf6Airrjm-AvV9F1g</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>FORST, Gunnar</creator><creator>THORUP, Anders</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2005</creationdate><title>What costs are minimized by Huffman trees?</title><author>FORST, Gunnar ; THORUP, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-73e5295e535a33c7dc5383e344b7ccf9961d332ce61af065f39c21d2db7715313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Coding, codes</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Costs</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FORST, Gunnar</creatorcontrib><creatorcontrib>THORUP, Anders</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FORST, Gunnar</au><au>THORUP, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What costs are minimized by Huffman trees?</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2005</date><risdate>2005</risdate><volume>19</volume><issue>1</issue><spage>46</spage><epage>68</epage><pages>46-68</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>We characterize those functions on weighted trees that are minimized at Huffman trees and those that are minimized at trees with the same level sequence as a Huffman tree. An important tool is a set of inequalities between weights of subtrees shown to be characteristic for Huffman trees. A byproduct is an algorithm transforming an arbitrary weighted tree into a Huffman tree; for a given tree, the maximal number of steps that may be taken by this algorithm is a numerical measure of how far the tree is from being a Huffman tree.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895480103421725</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2005, Vol.19 (1), p.46-68 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925645549 |
source | SIAM Journals Archive; ABI/INFORM Global |
subjects | Algorithms Applied sciences Coding, codes Combinatorics Combinatorics. Ordered structures Costs Exact sciences and technology Graph theory Information, signal and communications theory Mathematics Sciences and techniques of general use Signal and communications theory Telecommunications and information theory |
title | What costs are minimized by Huffman trees? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20costs%20are%20minimized%20by%20Huffman%20trees?&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=FORST,%20Gunnar&rft.date=2005&rft.volume=19&rft.issue=1&rft.spage=46&rft.epage=68&rft.pages=46-68&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/S0895480103421725&rft_dat=%3Cproquest_cross%3E2599592461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-73e5295e535a33c7dc5383e344b7ccf9961d332ce61af065f39c21d2db7715313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=925645549&rft_id=info:pmid/&rfr_iscdi=true |