Loading…
On the Puiseux series expansion of the limit discount equation of stochastic games
In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski...
Saved in:
Published in: | SIAM journal on control and optimization 1997-05, Vol.35 (3), p.860-875 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3 |
container_end_page | 875 |
container_issue | 3 |
container_start_page | 860 |
container_title | SIAM journal on control and optimization |
container_volume | 35 |
creator | SZCZECHLA, W. W CONNELL, S. A FILAR, J. A VRIEZE, O. J |
description | In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties. |
doi_str_mv | 10.1137/S0363012995284138 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925823497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600597061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</originalsourceid><addsrcrecordid>eNplkFtLAzEQhYMoWKs_wLcgvq5mct08SvEGhYqX5yVNszal3a2ZLNR_764tvvg0w3znnBmGkEtgNwDC3L4xoQUDbq3ipQRRHpERMKsK0_fHZDTgYuCn5AxxxRhICXJEXmcNzctAX7qIodtRDCkGpGG3dQ3GtqFt_cvXcRMzXUT0bddkGr46lw8Yc-uXDnP09NNtAp6Tk9qtMVwc6ph8PNy_T56K6ezxeXI3LXx_ZS70XEoWhDESuHOq5lrXZQmcz4eBNBzAy9IqDVwtmKuDEl5rNbcG7MLIhRiTq33uNrVfXcBcrdouNf3KynJVciGt6UWwF_nUIqZQV9sUNy59V8Cq4XPVv8_1nutDsEPv1nVyjY_4Z-RaKWAgfgCg9Gv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925823497</pqid></control><display><type>article</type><title>On the Puiseux series expansion of the limit discount equation of stochastic games</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>SZCZECHLA, W. W ; CONNELL, S. A ; FILAR, J. A ; VRIEZE, O. J</creator><creatorcontrib>SZCZECHLA, W. W ; CONNELL, S. A ; FILAR, J. A ; VRIEZE, O. J</creatorcontrib><description>In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/S0363012995284138</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Applied sciences ; Exact sciences and technology ; Game theory ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>SIAM journal on control and optimization, 1997-05, Vol.35 (3), p.860-875</ispartof><rights>1997 INIST-CNRS</rights><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</citedby><cites>FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/925823497?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,3174,11675,27911,27912,36047,44350</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2655101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SZCZECHLA, W. W</creatorcontrib><creatorcontrib>CONNELL, S. A</creatorcontrib><creatorcontrib>FILAR, J. A</creatorcontrib><creatorcontrib>VRIEZE, O. J</creatorcontrib><title>On the Puiseux series expansion of the limit discount equation of stochastic games</title><title>SIAM journal on control and optimization</title><description>In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkFtLAzEQhYMoWKs_wLcgvq5mct08SvEGhYqX5yVNszal3a2ZLNR_764tvvg0w3znnBmGkEtgNwDC3L4xoQUDbq3ipQRRHpERMKsK0_fHZDTgYuCn5AxxxRhICXJEXmcNzctAX7qIodtRDCkGpGG3dQ3GtqFt_cvXcRMzXUT0bddkGr46lw8Yc-uXDnP09NNtAp6Tk9qtMVwc6ph8PNy_T56K6ezxeXI3LXx_ZS70XEoWhDESuHOq5lrXZQmcz4eBNBzAy9IqDVwtmKuDEl5rNbcG7MLIhRiTq33uNrVfXcBcrdouNf3KynJVciGt6UWwF_nUIqZQV9sUNy59V8Cq4XPVv8_1nutDsEPv1nVyjY_4Z-RaKWAgfgCg9Gv8</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>SZCZECHLA, W. W</creator><creator>CONNELL, S. A</creator><creator>FILAR, J. A</creator><creator>VRIEZE, O. J</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19970501</creationdate><title>On the Puiseux series expansion of the limit discount equation of stochastic games</title><author>SZCZECHLA, W. W ; CONNELL, S. A ; FILAR, J. A ; VRIEZE, O. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SZCZECHLA, W. W</creatorcontrib><creatorcontrib>CONNELL, S. A</creatorcontrib><creatorcontrib>FILAR, J. A</creatorcontrib><creatorcontrib>VRIEZE, O. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SZCZECHLA, W. W</au><au>CONNELL, S. A</au><au>FILAR, J. A</au><au>VRIEZE, O. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Puiseux series expansion of the limit discount equation of stochastic games</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>35</volume><issue>3</issue><spage>860</spage><epage>875</epage><pages>860-875</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0363012995284138</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 1997-05, Vol.35 (3), p.860-875 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_925823497 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algebra Applied sciences Exact sciences and technology Game theory Operational research and scientific management Operational research. Management science |
title | On the Puiseux series expansion of the limit discount equation of stochastic games |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Puiseux%20series%20expansion%20of%20the%20limit%20discount%20equation%20of%20stochastic%20games&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=SZCZECHLA,%20W.%20W&rft.date=1997-05-01&rft.volume=35&rft.issue=3&rft.spage=860&rft.epage=875&rft.pages=860-875&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/S0363012995284138&rft_dat=%3Cproquest_cross%3E2600597061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=925823497&rft_id=info:pmid/&rfr_iscdi=true |