Loading…

On the Puiseux series expansion of the limit discount equation of stochastic games

In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on control and optimization 1997-05, Vol.35 (3), p.860-875
Main Authors: SZCZECHLA, W. W, CONNELL, S. A, FILAR, J. A, VRIEZE, O. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3
cites cdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3
container_end_page 875
container_issue 3
container_start_page 860
container_title SIAM journal on control and optimization
container_volume 35
creator SZCZECHLA, W. W
CONNELL, S. A
FILAR, J. A
VRIEZE, O. J
description In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.
doi_str_mv 10.1137/S0363012995284138
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925823497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600597061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</originalsourceid><addsrcrecordid>eNplkFtLAzEQhYMoWKs_wLcgvq5mct08SvEGhYqX5yVNszal3a2ZLNR_764tvvg0w3znnBmGkEtgNwDC3L4xoQUDbq3ipQRRHpERMKsK0_fHZDTgYuCn5AxxxRhICXJEXmcNzctAX7qIodtRDCkGpGG3dQ3GtqFt_cvXcRMzXUT0bddkGr46lw8Yc-uXDnP09NNtAp6Tk9qtMVwc6ph8PNy_T56K6ezxeXI3LXx_ZS70XEoWhDESuHOq5lrXZQmcz4eBNBzAy9IqDVwtmKuDEl5rNbcG7MLIhRiTq33uNrVfXcBcrdouNf3KynJVciGt6UWwF_nUIqZQV9sUNy59V8Cq4XPVv8_1nutDsEPv1nVyjY_4Z-RaKWAgfgCg9Gv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925823497</pqid></control><display><type>article</type><title>On the Puiseux series expansion of the limit discount equation of stochastic games</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>SZCZECHLA, W. W ; CONNELL, S. A ; FILAR, J. A ; VRIEZE, O. J</creator><creatorcontrib>SZCZECHLA, W. W ; CONNELL, S. A ; FILAR, J. A ; VRIEZE, O. J</creatorcontrib><description>In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/S0363012995284138</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Applied sciences ; Exact sciences and technology ; Game theory ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>SIAM journal on control and optimization, 1997-05, Vol.35 (3), p.860-875</ispartof><rights>1997 INIST-CNRS</rights><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</citedby><cites>FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/925823497?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,3174,11675,27911,27912,36047,44350</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2655101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SZCZECHLA, W. W</creatorcontrib><creatorcontrib>CONNELL, S. A</creatorcontrib><creatorcontrib>FILAR, J. A</creatorcontrib><creatorcontrib>VRIEZE, O. J</creatorcontrib><title>On the Puiseux series expansion of the limit discount equation of stochastic games</title><title>SIAM journal on control and optimization</title><description>In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkFtLAzEQhYMoWKs_wLcgvq5mct08SvEGhYqX5yVNszal3a2ZLNR_764tvvg0w3znnBmGkEtgNwDC3L4xoQUDbq3ipQRRHpERMKsK0_fHZDTgYuCn5AxxxRhICXJEXmcNzctAX7qIodtRDCkGpGG3dQ3GtqFt_cvXcRMzXUT0bddkGr46lw8Yc-uXDnP09NNtAp6Tk9qtMVwc6ph8PNy_T56K6ezxeXI3LXx_ZS70XEoWhDESuHOq5lrXZQmcz4eBNBzAy9IqDVwtmKuDEl5rNbcG7MLIhRiTq33uNrVfXcBcrdouNf3KynJVciGt6UWwF_nUIqZQV9sUNy59V8Cq4XPVv8_1nutDsEPv1nVyjY_4Z-RaKWAgfgCg9Gv8</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>SZCZECHLA, W. W</creator><creator>CONNELL, S. A</creator><creator>FILAR, J. A</creator><creator>VRIEZE, O. J</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19970501</creationdate><title>On the Puiseux series expansion of the limit discount equation of stochastic games</title><author>SZCZECHLA, W. W ; CONNELL, S. A ; FILAR, J. A ; VRIEZE, O. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SZCZECHLA, W. W</creatorcontrib><creatorcontrib>CONNELL, S. A</creatorcontrib><creatorcontrib>FILAR, J. A</creatorcontrib><creatorcontrib>VRIEZE, O. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SZCZECHLA, W. W</au><au>CONNELL, S. A</au><au>FILAR, J. A</au><au>VRIEZE, O. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Puiseux series expansion of the limit discount equation of stochastic games</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>35</volume><issue>3</issue><spage>860</spage><epage>875</epage><pages>860-875</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>In this paper we give a new proof of the existence of Puiseux series expansion of the limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and Kohlberg [ Math. Oper. Res., 3 (1976), pp. 197--208], our proof is not algebraic and does not invoke Tarski's principle. Instead we use only the theory of functions of complex variables and complex analytic varieties.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0363012995284138</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1997-05, Vol.35 (3), p.860-875
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925823497
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Algebra
Applied sciences
Exact sciences and technology
Game theory
Operational research and scientific management
Operational research. Management science
title On the Puiseux series expansion of the limit discount equation of stochastic games
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Puiseux%20series%20expansion%20of%20the%20limit%20discount%20equation%20of%20stochastic%20games&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=SZCZECHLA,%20W.%20W&rft.date=1997-05-01&rft.volume=35&rft.issue=3&rft.spage=860&rft.epage=875&rft.pages=860-875&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/S0363012995284138&rft_dat=%3Cproquest_cross%3E2600597061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-6b440e377412aa5f266f88122b412a47211c48956125d0afe53c665b9719d74d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=925823497&rft_id=info:pmid/&rfr_iscdi=true