Loading…

Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales

A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of m...

Full description

Saved in:
Bibliographic Details
Published in:SIAM review 1977-07, Vol.19 (3), p.502-516
Main Author: Wollkind, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3
cites cdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3
container_end_page 516
container_issue 3
container_start_page 502
container_title SIAM review
container_volume 19
creator Wollkind, David J.
description A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.
doi_str_mv 10.1137/1019072
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926186916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2029617</jstor_id><sourcerecordid>2029617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKv4BTwEL55WM0mT7Xorpf4Bi0LreUmziZuy3axJFq2f3tQWmcPwmB9veA-hSyC3ACy_AwIFyekRGgApeJZTQo7RgBAmMhiN-Ck6C2FNkh6zYoB-Frb96Bvp8Zv2sfcrGa1r8VKrurWfvQ73eIKnbtNJb0M6OINjrfFcx9pVOzWXUdW6wpOw3XTRRavw7LuTbUg2AX_ZWONlLeMf2jfRdo3GCyUbHc7RiZFN0BeHPUTvD7Pl9Cl7eX18nk5eMkUJi5lRRkIuKQgCxhgKRvCRkGOeK8OESJGY5FzsstGCr6DitKoYobmiIs2KDdH13rfzbpcolmvX-za9LAsqYCwKEAm62UPKuxC8NmXn7Ub6bQmk3PVaHnpN5NWeXIfo_D9GCS0E5OwX6P9y9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926186916</pqid></control><display><type>article</type><title>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</title><source>SIAM Journals Archive</source><source>ABI/INFORM global</source><source>JSTOR</source><creator>Wollkind, David J.</creator><creatorcontrib>Wollkind, David J.</creatorcontrib><description>A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1019072</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Boundary conditions ; Boundary layers ; Boundary value problems ; Constant coefficients ; High temperature ; Investigations ; Low temperature ; Mathematical independent variables ; Parameter identification ; Partial differential equations</subject><ispartof>SIAM review, 1977-07, Vol.19 (3), p.502-516</ispartof><rights>Copyright 1977 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1977 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</citedby><cites>FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2029617$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/926186916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339,58213,58446</link.rule.ids></links><search><creatorcontrib>Wollkind, David J.</creatorcontrib><title>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</title><title>SIAM review</title><description>A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Boundary value problems</subject><subject>Constant coefficients</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mathematical independent variables</subject><subject>Parameter identification</subject><subject>Partial differential equations</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kE9LAzEQxYMoWKv4BTwEL55WM0mT7Xorpf4Bi0LreUmziZuy3axJFq2f3tQWmcPwmB9veA-hSyC3ACy_AwIFyekRGgApeJZTQo7RgBAmMhiN-Ck6C2FNkh6zYoB-Frb96Bvp8Zv2sfcrGa1r8VKrurWfvQ73eIKnbtNJb0M6OINjrfFcx9pVOzWXUdW6wpOw3XTRRavw7LuTbUg2AX_ZWONlLeMf2jfRdo3GCyUbHc7RiZFN0BeHPUTvD7Pl9Cl7eX18nk5eMkUJi5lRRkIuKQgCxhgKRvCRkGOeK8OESJGY5FzsstGCr6DitKoYobmiIs2KDdH13rfzbpcolmvX-za9LAsqYCwKEAm62UPKuxC8NmXn7Ub6bQmk3PVaHnpN5NWeXIfo_D9GCS0E5OwX6P9y9A</recordid><startdate>19770701</startdate><enddate>19770701</enddate><creator>Wollkind, David J.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19770701</creationdate><title>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</title><author>Wollkind, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Boundary value problems</topic><topic>Constant coefficients</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mathematical independent variables</topic><topic>Parameter identification</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wollkind, David J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career &amp; Technical Education Database</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wollkind, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</atitle><jtitle>SIAM review</jtitle><date>1977-07-01</date><risdate>1977</risdate><volume>19</volume><issue>3</issue><spage>502</spage><epage>516</epage><pages>502-516</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1019072</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1977-07, Vol.19 (3), p.502-516
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_926186916
source SIAM Journals Archive; ABI/INFORM global; JSTOR
subjects Applied mathematics
Approximation
Boundary conditions
Boundary layers
Boundary value problems
Constant coefficients
High temperature
Investigations
Low temperature
Mathematical independent variables
Parameter identification
Partial differential equations
title Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Perturbation%20Techniques:%20A%20Comparison%20of%20the%20Method%20of%20Matched%20Asymptotic%20Expansions%20with%20That%20of%20Multiple%20Scales&rft.jtitle=SIAM%20review&rft.au=Wollkind,%20David%20J.&rft.date=1977-07-01&rft.volume=19&rft.issue=3&rft.spage=502&rft.epage=516&rft.pages=502-516&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1019072&rft_dat=%3Cjstor_proqu%3E2029617%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926186916&rft_id=info:pmid/&rft_jstor_id=2029617&rfr_iscdi=true