Loading…
Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales
A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of m...
Saved in:
Published in: | SIAM review 1977-07, Vol.19 (3), p.502-516 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3 |
container_end_page | 516 |
container_issue | 3 |
container_start_page | 502 |
container_title | SIAM review |
container_volume | 19 |
creator | Wollkind, David J. |
description | A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool. |
doi_str_mv | 10.1137/1019072 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926186916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2029617</jstor_id><sourcerecordid>2029617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKv4BTwEL55WM0mT7Xorpf4Bi0LreUmziZuy3axJFq2f3tQWmcPwmB9veA-hSyC3ACy_AwIFyekRGgApeJZTQo7RgBAmMhiN-Ck6C2FNkh6zYoB-Frb96Bvp8Zv2sfcrGa1r8VKrurWfvQ73eIKnbtNJb0M6OINjrfFcx9pVOzWXUdW6wpOw3XTRRavw7LuTbUg2AX_ZWONlLeMf2jfRdo3GCyUbHc7RiZFN0BeHPUTvD7Pl9Cl7eX18nk5eMkUJi5lRRkIuKQgCxhgKRvCRkGOeK8OESJGY5FzsstGCr6DitKoYobmiIs2KDdH13rfzbpcolmvX-za9LAsqYCwKEAm62UPKuxC8NmXn7Ub6bQmk3PVaHnpN5NWeXIfo_D9GCS0E5OwX6P9y9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926186916</pqid></control><display><type>article</type><title>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</title><source>SIAM Journals Archive</source><source>ABI/INFORM global</source><source>JSTOR</source><creator>Wollkind, David J.</creator><creatorcontrib>Wollkind, David J.</creatorcontrib><description>A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1019072</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Boundary conditions ; Boundary layers ; Boundary value problems ; Constant coefficients ; High temperature ; Investigations ; Low temperature ; Mathematical independent variables ; Parameter identification ; Partial differential equations</subject><ispartof>SIAM review, 1977-07, Vol.19 (3), p.502-516</ispartof><rights>Copyright 1977 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1977 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</citedby><cites>FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2029617$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/926186916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339,58213,58446</link.rule.ids></links><search><creatorcontrib>Wollkind, David J.</creatorcontrib><title>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</title><title>SIAM review</title><description>A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Boundary value problems</subject><subject>Constant coefficients</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mathematical independent variables</subject><subject>Parameter identification</subject><subject>Partial differential equations</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kE9LAzEQxYMoWKv4BTwEL55WM0mT7Xorpf4Bi0LreUmziZuy3axJFq2f3tQWmcPwmB9veA-hSyC3ACy_AwIFyekRGgApeJZTQo7RgBAmMhiN-Ck6C2FNkh6zYoB-Frb96Bvp8Zv2sfcrGa1r8VKrurWfvQ73eIKnbtNJb0M6OINjrfFcx9pVOzWXUdW6wpOw3XTRRavw7LuTbUg2AX_ZWONlLeMf2jfRdo3GCyUbHc7RiZFN0BeHPUTvD7Pl9Cl7eX18nk5eMkUJi5lRRkIuKQgCxhgKRvCRkGOeK8OESJGY5FzsstGCr6DitKoYobmiIs2KDdH13rfzbpcolmvX-za9LAsqYCwKEAm62UPKuxC8NmXn7Ub6bQmk3PVaHnpN5NWeXIfo_D9GCS0E5OwX6P9y9A</recordid><startdate>19770701</startdate><enddate>19770701</enddate><creator>Wollkind, David J.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19770701</creationdate><title>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</title><author>Wollkind, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Boundary value problems</topic><topic>Constant coefficients</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mathematical independent variables</topic><topic>Parameter identification</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wollkind, David J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career & Technical Education Database</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wollkind, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales</atitle><jtitle>SIAM review</jtitle><date>1977-07-01</date><risdate>1977</risdate><volume>19</volume><issue>3</issue><spage>502</spage><epage>516</epage><pages>502-516</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>A comparison is made between the uniformly valid asymptotic representations which can be developed for the solution of a singular perturbation boundary value problem involving a linear second order differential equation by using both the technique of matched asymptotic expansions and the method of multiple scales. Next, there is a discussion of some of the subtle features as well as the relative advantages, limitations, logical extensions, and typical applications of these two methods of obtaining uniformly valid asymptotic representations when applied to slightly more general singular perturbation problems which arise from investigations of various phenomena in the natural sciences. Finally, a parameter identification example relevant to biological population dynamics is presented to illustrate the fact that the mere knowledge of these singular perturbation techniques can be a powerful analytical tool.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1019072</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 1977-07, Vol.19 (3), p.502-516 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_proquest_journals_926186916 |
source | SIAM Journals Archive; ABI/INFORM global; JSTOR |
subjects | Applied mathematics Approximation Boundary conditions Boundary layers Boundary value problems Constant coefficients High temperature Investigations Low temperature Mathematical independent variables Parameter identification Partial differential equations |
title | Singular Perturbation Techniques: A Comparison of the Method of Matched Asymptotic Expansions with That of Multiple Scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Perturbation%20Techniques:%20A%20Comparison%20of%20the%20Method%20of%20Matched%20Asymptotic%20Expansions%20with%20That%20of%20Multiple%20Scales&rft.jtitle=SIAM%20review&rft.au=Wollkind,%20David%20J.&rft.date=1977-07-01&rft.volume=19&rft.issue=3&rft.spage=502&rft.epage=516&rft.pages=502-516&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1019072&rft_dat=%3Cjstor_proqu%3E2029617%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-fcfa17a21601fff21f6546a857cf3664453a5561445295b1d52dd3027c26262b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926186916&rft_id=info:pmid/&rft_jstor_id=2029617&rfr_iscdi=true |