Loading…

Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors

This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curve...

Full description

Saved in:
Bibliographic Details
Published in:SIAM review 1973-04, Vol.15 (2), p.275-282
Main Authors: Scholten, William B., Gaggioli, Richard A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3
cites
container_end_page 282
container_issue 2
container_start_page 275
container_title SIAM review
container_volume 15
creator Scholten, William B.
Gaggioli, Richard A.
description This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.
doi_str_mv 10.1137/1015029
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926197198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2028601</jstor_id><sourcerecordid>2028601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_gEPwYun1Zkkm90ctagVanvx47ik2US32E1NskL_vZEWT8PAwzsfhJwjXCPy6gYBS2DqgIwQVFlUDOCQjAC4LFCI8picxLiC3Ndcjch87sNaf0WaPJ14H9qu18nS6XZjQxyC08ZGqiN9t93HZ6LPXT_EYtHbjH906HSf6J2Olr5Zk3yIp-TI5TR7tq9j8vpw_zKZFrPF49PkdlYYBjwVUgngvGaulayWyKWWwjgnZFUDc9ywEqvW1pa7pVZCKmY46lbaSgoUji35mFzucjfBfw82pmblh9DnkY1iElWFqs7oaodM8DEG65pN6NY6bBuE5u9Xzf5XWV7s5CrmK_4Zg7wdIP8FH4Ni4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926197198</pqid></control><display><type>article</type><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><source>SIAM Journals Archive</source><source>ABI/INFORM Collection</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Scholten, William B. ; Gaggioli, Richard A.</creator><creatorcontrib>Scholten, William B. ; Gaggioli, Richard A.</creatorcontrib><description>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1015029</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Coordinate systems ; Coordinate transformations ; Curves ; Determinants ; Hypersurfaces ; Mathematical manifolds ; Mathematical vectors ; Neighborhoods ; Partial derivatives ; Tangent function ; Tangents</subject><ispartof>SIAM review, 1973-04, Vol.15 (2), p.275-282</ispartof><rights>Copyright 1973 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1973 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2028601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/926197198?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>Scholten, William B.</creatorcontrib><creatorcontrib>Gaggioli, Richard A.</creatorcontrib><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><title>SIAM review</title><description>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</description><subject>Coordinate systems</subject><subject>Coordinate transformations</subject><subject>Curves</subject><subject>Determinants</subject><subject>Hypersurfaces</subject><subject>Mathematical manifolds</subject><subject>Mathematical vectors</subject><subject>Neighborhoods</subject><subject>Partial derivatives</subject><subject>Tangent function</subject><subject>Tangents</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90E1LAzEQBuAgCtYq_gEPwYun1Zkkm90ctagVanvx47ik2US32E1NskL_vZEWT8PAwzsfhJwjXCPy6gYBS2DqgIwQVFlUDOCQjAC4LFCI8picxLiC3Ndcjch87sNaf0WaPJ14H9qu18nS6XZjQxyC08ZGqiN9t93HZ6LPXT_EYtHbjH906HSf6J2Olr5Zk3yIp-TI5TR7tq9j8vpw_zKZFrPF49PkdlYYBjwVUgngvGaulayWyKWWwjgnZFUDc9ywEqvW1pa7pVZCKmY46lbaSgoUji35mFzucjfBfw82pmblh9DnkY1iElWFqs7oaodM8DEG65pN6NY6bBuE5u9Xzf5XWV7s5CrmK_4Zg7wdIP8FH4Ni4w</recordid><startdate>19730401</startdate><enddate>19730401</enddate><creator>Scholten, William B.</creator><creator>Gaggioli, Richard A.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19730401</creationdate><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><author>Scholten, William B. ; Gaggioli, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Coordinate systems</topic><topic>Coordinate transformations</topic><topic>Curves</topic><topic>Determinants</topic><topic>Hypersurfaces</topic><topic>Mathematical manifolds</topic><topic>Mathematical vectors</topic><topic>Neighborhoods</topic><topic>Partial derivatives</topic><topic>Tangent function</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholten, William B.</creatorcontrib><creatorcontrib>Gaggioli, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Collection</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholten, William B.</au><au>Gaggioli, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</atitle><jtitle>SIAM review</jtitle><date>1973-04-01</date><risdate>1973</risdate><volume>15</volume><issue>2</issue><spage>275</spage><epage>282</epage><pages>275-282</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1015029</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1973-04, Vol.15 (2), p.275-282
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_926197198
source SIAM Journals Archive; ABI/INFORM Collection; JSTOR Archival Journals and Primary Sources Collection
subjects Coordinate systems
Coordinate transformations
Curves
Determinants
Hypersurfaces
Mathematical manifolds
Mathematical vectors
Neighborhoods
Partial derivatives
Tangent function
Tangents
title Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normals%20to%20Coordinate%20Hypersurfaces%20as%20Weight%20Minus-One%20Covariant%20Base%20Vectors&rft.jtitle=SIAM%20review&rft.au=Scholten,%20William%20B.&rft.date=1973-04-01&rft.volume=15&rft.issue=2&rft.spage=275&rft.epage=282&rft.pages=275-282&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1015029&rft_dat=%3Cjstor_proqu%3E2028601%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926197198&rft_id=info:pmid/&rft_jstor_id=2028601&rfr_iscdi=true