Loading…
Kinetic Structure Simulations of Nematic Polymers in Plane Couette Cells. II: In-Plane Structure Transitions
Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and b...
Saved in:
Published in: | Multiscale modeling & simulation 2005-01, Vol.4 (4), p.1280-1304 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903 |
container_end_page | 1304 |
container_issue | 4 |
container_start_page | 1280 |
container_title | Multiscale modeling & simulation |
container_volume | 4 |
creator | Forest, M. Gregory Zhou, Ruhai Wang, Qi |
description | Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in viscous solvents have a theoretical and computational foundation from which one can model parallel plate Couette cell experiments and explore anisotropic structure generation arising from nonequilibrium interactions between hydrodynamics, molecular short- and long-range elasticity, and confinement effects. Recent progress on the longwave limit of homogeneous nematic polymers in imposed simple shear and linear planar flows [R. G. Larson and H. Ottinger, Macromolecules, 24 (1991), pp. 6270--6282], [V. Faraoni, M. Grosso, S. Crescitelli, and P. L. Maffettone, J. Rheol., 43 (1999), pp. 829--843], [M. Grosso, R. Keunings, S. Crescitelli, and P. L. Maffettone, Phys. Rev. Lett., 86 (2001), pp. 3184--3187], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 43 (2004), pp. 17--37], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 44 (2004), pp. 80--93], [M. G. Forest, Q. Wang, R. Zhou, and E. Choate, J. Non-Newtonian Fluid Mech., 118 (2004), pp. 17--31], [M. G. Forest, R. Zhou, and Q. Wang, Phys. Rev. Lett., 93 (2004), 088301] provides resolved kinetic simulations of the molecular orientational distribution. These results characterize anisotropy and dynamic attractors of sheared bulk domains and underscore limitations of mesoscopic models for orientation of the rigid rod or platelet ensembles. In this paper, we apply our resolved kinetic structure code [R. Zhou, M. G. Forest, and Q. Wang, Multiscale Model. Simul., 3 (2005), pp. 853--870] to model onset and saturation of heterogeneity in the orientational distribution by coupling a distortional elasticity potential (with distinct elasticity constants) and anchoring conditions in a plane Couette cell. For this initial study, the flow field is imposed and |
doi_str_mv | 10.1137/040618187 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_926217927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602304571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMoWKsL_0Fw52L0JZlJJu6k-DFYtNC6HjIxgZRMpiaZRf-9rZW6uhfe4Ty4CF0TuCOEiXsogZOa1OIETUhVQsFKLk6PvZLn6CKlNQAFTmGC_JsLJjuNlzmOOo_R4KXrR6-yG0LCg8Xvpld7YDH4bW9iwi7ghVfB4Nkwmpx3abxPd7hpHnATisPtX7eKKiT3q7tEZ1b5ZK7-coo-n59Ws9di_vHSzB7nhWaVyAUjumTdF1XKgLRE2o5TU1OQklrJOq0rrkFyLTRRjKlSCy7Lura2Ux0YCWyKbg7eTRy-R5Nyux7GGHYvW0k5JUJSsYNuD5COQ0rR2HYTXa_itiXQ7rdsj1uyH4slZlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926217927</pqid></control><display><type>article</type><title>Kinetic Structure Simulations of Nematic Polymers in Plane Couette Cells. II: In-Plane Structure Transitions</title><source>ABI/INFORM global</source><creator>Forest, M. Gregory ; Zhou, Ruhai ; Wang, Qi</creator><creatorcontrib>Forest, M. Gregory ; Zhou, Ruhai ; Wang, Qi</creatorcontrib><description>Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in viscous solvents have a theoretical and computational foundation from which one can model parallel plate Couette cell experiments and explore anisotropic structure generation arising from nonequilibrium interactions between hydrodynamics, molecular short- and long-range elasticity, and confinement effects. Recent progress on the longwave limit of homogeneous nematic polymers in imposed simple shear and linear planar flows [R. G. Larson and H. Ottinger, Macromolecules, 24 (1991), pp. 6270--6282], [V. Faraoni, M. Grosso, S. Crescitelli, and P. L. Maffettone, J. Rheol., 43 (1999), pp. 829--843], [M. Grosso, R. Keunings, S. Crescitelli, and P. L. Maffettone, Phys. Rev. Lett., 86 (2001), pp. 3184--3187], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 43 (2004), pp. 17--37], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 44 (2004), pp. 80--93], [M. G. Forest, Q. Wang, R. Zhou, and E. Choate, J. Non-Newtonian Fluid Mech., 118 (2004), pp. 17--31], [M. G. Forest, R. Zhou, and Q. Wang, Phys. Rev. Lett., 93 (2004), 088301] provides resolved kinetic simulations of the molecular orientational distribution. These results characterize anisotropy and dynamic attractors of sheared bulk domains and underscore limitations of mesoscopic models for orientation of the rigid rod or platelet ensembles. In this paper, we apply our resolved kinetic structure code [R. Zhou, M. G. Forest, and Q. Wang, Multiscale Model. Simul., 3 (2005), pp. 853--870] to model onset and saturation of heterogeneity in the orientational distribution by coupling a distortional elasticity potential (with distinct elasticity constants) and anchoring conditions in a plane Couette cell. For this initial study, the flow field is imposed and the orientational distribution is confined to the shear deformation plane, which affords comparison with seminal [T. Tsuji and A. D. Rey, Phys. Rev. E (3), 62 (2000), pp. 8141--8151] as well as our own mesoscopic model simulations [H. Zhou, M. G. Forest, and Q. Wang, J. Non-Newtonian Fluid Mech., submitted], [H. Zhou and M. G. Forest, Discrete Contin. Dyn. Syst. Ser. B}, to appear].</description><identifier>ISSN: 1540-3459</identifier><identifier>EISSN: 1540-3467</identifier><identifier>DOI: 10.1137/040618187</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Anisotropy ; Applied mathematics ; Boundary conditions ; Fluid mechanics ; Morphology ; Non-Newtonian fluids ; Polymers ; Simulation</subject><ispartof>Multiscale modeling & simulation, 2005-01, Vol.4 (4), p.1280-1304</ispartof><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903</citedby><cites>FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/926217927?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Forest, M. Gregory</creatorcontrib><creatorcontrib>Zhou, Ruhai</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><title>Kinetic Structure Simulations of Nematic Polymers in Plane Couette Cells. II: In-Plane Structure Transitions</title><title>Multiscale modeling & simulation</title><description>Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in viscous solvents have a theoretical and computational foundation from which one can model parallel plate Couette cell experiments and explore anisotropic structure generation arising from nonequilibrium interactions between hydrodynamics, molecular short- and long-range elasticity, and confinement effects. Recent progress on the longwave limit of homogeneous nematic polymers in imposed simple shear and linear planar flows [R. G. Larson and H. Ottinger, Macromolecules, 24 (1991), pp. 6270--6282], [V. Faraoni, M. Grosso, S. Crescitelli, and P. L. Maffettone, J. Rheol., 43 (1999), pp. 829--843], [M. Grosso, R. Keunings, S. Crescitelli, and P. L. Maffettone, Phys. Rev. Lett., 86 (2001), pp. 3184--3187], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 43 (2004), pp. 17--37], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 44 (2004), pp. 80--93], [M. G. Forest, Q. Wang, R. Zhou, and E. Choate, J. Non-Newtonian Fluid Mech., 118 (2004), pp. 17--31], [M. G. Forest, R. Zhou, and Q. Wang, Phys. Rev. Lett., 93 (2004), 088301] provides resolved kinetic simulations of the molecular orientational distribution. These results characterize anisotropy and dynamic attractors of sheared bulk domains and underscore limitations of mesoscopic models for orientation of the rigid rod or platelet ensembles. In this paper, we apply our resolved kinetic structure code [R. Zhou, M. G. Forest, and Q. Wang, Multiscale Model. Simul., 3 (2005), pp. 853--870] to model onset and saturation of heterogeneity in the orientational distribution by coupling a distortional elasticity potential (with distinct elasticity constants) and anchoring conditions in a plane Couette cell. For this initial study, the flow field is imposed and the orientational distribution is confined to the shear deformation plane, which affords comparison with seminal [T. Tsuji and A. D. Rey, Phys. Rev. E (3), 62 (2000), pp. 8141--8151] as well as our own mesoscopic model simulations [H. Zhou, M. G. Forest, and Q. Wang, J. Non-Newtonian Fluid Mech., submitted], [H. Zhou and M. G. Forest, Discrete Contin. Dyn. Syst. Ser. B}, to appear].</description><subject>Anisotropy</subject><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Fluid mechanics</subject><subject>Morphology</subject><subject>Non-Newtonian fluids</subject><subject>Polymers</subject><subject>Simulation</subject><issn>1540-3459</issn><issn>1540-3467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpFkE1LAzEURYMoWKsL_0Fw52L0JZlJJu6k-DFYtNC6HjIxgZRMpiaZRf-9rZW6uhfe4Ty4CF0TuCOEiXsogZOa1OIETUhVQsFKLk6PvZLn6CKlNQAFTmGC_JsLJjuNlzmOOo_R4KXrR6-yG0LCg8Xvpld7YDH4bW9iwi7ghVfB4Nkwmpx3abxPd7hpHnATisPtX7eKKiT3q7tEZ1b5ZK7-coo-n59Ws9di_vHSzB7nhWaVyAUjumTdF1XKgLRE2o5TU1OQklrJOq0rrkFyLTRRjKlSCy7Lura2Ux0YCWyKbg7eTRy-R5Nyux7GGHYvW0k5JUJSsYNuD5COQ0rR2HYTXa_itiXQ7rdsj1uyH4slZlw</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Forest, M. Gregory</creator><creator>Zhou, Ruhai</creator><creator>Wang, Qi</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>200501</creationdate><title>Kinetic Structure Simulations of Nematic Polymers in Plane Couette Cells. II: In-Plane Structure Transitions</title><author>Forest, M. Gregory ; Zhou, Ruhai ; Wang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropy</topic><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Fluid mechanics</topic><topic>Morphology</topic><topic>Non-Newtonian fluids</topic><topic>Polymers</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forest, M. Gregory</creatorcontrib><creatorcontrib>Zhou, Ruhai</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Multiscale modeling & simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forest, M. Gregory</au><au>Zhou, Ruhai</au><au>Wang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Structure Simulations of Nematic Polymers in Plane Couette Cells. II: In-Plane Structure Transitions</atitle><jtitle>Multiscale modeling & simulation</jtitle><date>2005-01</date><risdate>2005</risdate><volume>4</volume><issue>4</issue><spage>1280</spage><epage>1304</epage><pages>1280-1304</pages><issn>1540-3459</issn><eissn>1540-3467</eissn><abstract>Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in viscous solvents have a theoretical and computational foundation from which one can model parallel plate Couette cell experiments and explore anisotropic structure generation arising from nonequilibrium interactions between hydrodynamics, molecular short- and long-range elasticity, and confinement effects. Recent progress on the longwave limit of homogeneous nematic polymers in imposed simple shear and linear planar flows [R. G. Larson and H. Ottinger, Macromolecules, 24 (1991), pp. 6270--6282], [V. Faraoni, M. Grosso, S. Crescitelli, and P. L. Maffettone, J. Rheol., 43 (1999), pp. 829--843], [M. Grosso, R. Keunings, S. Crescitelli, and P. L. Maffettone, Phys. Rev. Lett., 86 (2001), pp. 3184--3187], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 43 (2004), pp. 17--37], [M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 44 (2004), pp. 80--93], [M. G. Forest, Q. Wang, R. Zhou, and E. Choate, J. Non-Newtonian Fluid Mech., 118 (2004), pp. 17--31], [M. G. Forest, R. Zhou, and Q. Wang, Phys. Rev. Lett., 93 (2004), 088301] provides resolved kinetic simulations of the molecular orientational distribution. These results characterize anisotropy and dynamic attractors of sheared bulk domains and underscore limitations of mesoscopic models for orientation of the rigid rod or platelet ensembles. In this paper, we apply our resolved kinetic structure code [R. Zhou, M. G. Forest, and Q. Wang, Multiscale Model. Simul., 3 (2005), pp. 853--870] to model onset and saturation of heterogeneity in the orientational distribution by coupling a distortional elasticity potential (with distinct elasticity constants) and anchoring conditions in a plane Couette cell. For this initial study, the flow field is imposed and the orientational distribution is confined to the shear deformation plane, which affords comparison with seminal [T. Tsuji and A. D. Rey, Phys. Rev. E (3), 62 (2000), pp. 8141--8151] as well as our own mesoscopic model simulations [H. Zhou, M. G. Forest, and Q. Wang, J. Non-Newtonian Fluid Mech., submitted], [H. Zhou and M. G. Forest, Discrete Contin. Dyn. Syst. Ser. B}, to appear].</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040618187</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-3459 |
ispartof | Multiscale modeling & simulation, 2005-01, Vol.4 (4), p.1280-1304 |
issn | 1540-3459 1540-3467 |
language | eng |
recordid | cdi_proquest_journals_926217927 |
source | ABI/INFORM global |
subjects | Anisotropy Applied mathematics Boundary conditions Fluid mechanics Morphology Non-Newtonian fluids Polymers Simulation |
title | Kinetic Structure Simulations of Nematic Polymers in Plane Couette Cells. II: In-Plane Structure Transitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Structure%20Simulations%20of%20Nematic%20Polymers%20in%20Plane%20Couette%20Cells.%20II:%20In-Plane%20Structure%20Transitions&rft.jtitle=Multiscale%20modeling%20&%20simulation&rft.au=Forest,%20M.%20Gregory&rft.date=2005-01&rft.volume=4&rft.issue=4&rft.spage=1280&rft.epage=1304&rft.pages=1280-1304&rft.issn=1540-3459&rft.eissn=1540-3467&rft_id=info:doi/10.1137/040618187&rft_dat=%3Cproquest_cross%3E2602304571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-31c43bd2aae09f19fb62e820992f93bcc56c096c7c1a33a4c769488ffbab0e903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926217927&rft_id=info:pmid/&rfr_iscdi=true |