Loading…

The Negative Consequences of Measurement Model Misspecification: A Response to Aguirre-urreta and Marakas

It has been more than 40 years since Blalock (1964) noted the distinction between what he called "cause" (formative) and "effect" (reflective) indicators of latent variables, and three decades since the academic literature recognized that some SEM measurement models don't fi...

Full description

Saved in:
Bibliographic Details
Published in:MIS quarterly 2012-03, Vol.36 (1), p.139-146
Main Authors: Jarvis, Cheryl Burke, MacKenzie, Scott B., Podsakoff, Philip M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-af26a9af288a04b54af7d5e1915b872f51e1260c9b5e2eea356fab9d4d371ba33
cites
container_end_page 146
container_issue 1
container_start_page 139
container_title MIS quarterly
container_volume 36
creator Jarvis, Cheryl Burke
MacKenzie, Scott B.
Podsakoff, Philip M.
description It has been more than 40 years since Blalock (1964) noted the distinction between what he called "cause" (formative) and "effect" (reflective) indicators of latent variables, and three decades since the academic literature recognized that some SEM measurement models don't fit classical test theory's assumptions about the direction of causality of the relationships between constructs and their indicators. However, recently researchers in a variety of disciplines have raised questions surrounding the correct conceptualization and operationalization of formative indicator measurement models. In these articles the authors attempted not only to illustrate the extent of measurement model misspecification in their literatures and the potential consequences of such misspecification but, more importantly, to provide needed guidance to researchers about how to determine which type of measurement model is conceptually appropriate, develop and purify scales using formative indicators, and specify structural equation models incorporating these composite latent variables.
doi_str_mv 10.2307/41410410
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926557876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41410410</jstor_id><sourcerecordid>41410410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-af26a9af288a04b54af7d5e1915b872f51e1260c9b5e2eea356fab9d4d371ba33</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRsFbBFxAWr7yJ7iGbTbwrxRM0ClKvwySZraltNu5uBN_eLVVh-Odivn9OhJxzdi0k0zcpTzmLcUAmgmciKbRkh2TChM4SrXN5TE68XzPGuOZ6QrrlO9JnXEHovpDObe_xc8S-QU-toSWCHx1usQ-0tC1uaNl5P2DTma6JFtvf0hl9RT_sjDRYOluNnXOYjFECUOhbWoKDD_Cn5MjAxuPZb56St_u75fwxWbw8PM1ni6SJ64cEjMigiJrnwNJapWB0q5AXXNW5FkZx5CJjTVErFIggVWagLtq0lZrXIOWUXO77Ds7GU3yo1nZ0fRxZFSJTSuc6i9DVHmqc9d6hqQbXbcF9V5xVuz9Wf3-M6MUeXftg3T_3X_8BCcpusw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926557876</pqid></control><display><type>article</type><title>The Negative Consequences of Measurement Model Misspecification: A Response to Aguirre-urreta and Marakas</title><source>EBSCOhost Business Source Ultimate</source><source>JSTOR</source><creator>Jarvis, Cheryl Burke ; MacKenzie, Scott B. ; Podsakoff, Philip M.</creator><creatorcontrib>Jarvis, Cheryl Burke ; MacKenzie, Scott B. ; Podsakoff, Philip M.</creatorcontrib><description>It has been more than 40 years since Blalock (1964) noted the distinction between what he called "cause" (formative) and "effect" (reflective) indicators of latent variables, and three decades since the academic literature recognized that some SEM measurement models don't fit classical test theory's assumptions about the direction of causality of the relationships between constructs and their indicators. However, recently researchers in a variety of disciplines have raised questions surrounding the correct conceptualization and operationalization of formative indicator measurement models. In these articles the authors attempted not only to illustrate the extent of measurement model misspecification in their literatures and the potential consequences of such misspecification but, more importantly, to provide needed guidance to researchers about how to determine which type of measurement model is conceptually appropriate, develop and purify scales using formative indicators, and specify structural equation models incorporating these composite latent variables.</description><identifier>ISSN: 0276-7783</identifier><identifier>EISSN: 2162-9730</identifier><identifier>DOI: 10.2307/41410410</identifier><identifier>CODEN: MISQDP</identifier><language>eng</language><publisher>Minneapolis: Management Information Systems Research Center, University of Minnesota</publisher><subject>Coefficients ; Construct validity ; Constructive empiricism ; Consumer research ; Estimation bias ; Marketing ; Measurement techniques ; Modeling ; Parametric models ; Reporting standards ; Research methodology ; Research methods ; Research Notes ; Specifications ; Studies</subject><ispartof>MIS quarterly, 2012-03, Vol.36 (1), p.139-146</ispartof><rights>Copyright © 2012 Management Information Systems Research Center (MISRC) of the University of Minnesota</rights><rights>Copyright University of Minnesota, MIS Research Center Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-af26a9af288a04b54af7d5e1915b872f51e1260c9b5e2eea356fab9d4d371ba33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41410410$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41410410$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Jarvis, Cheryl Burke</creatorcontrib><creatorcontrib>MacKenzie, Scott B.</creatorcontrib><creatorcontrib>Podsakoff, Philip M.</creatorcontrib><title>The Negative Consequences of Measurement Model Misspecification: A Response to Aguirre-urreta and Marakas</title><title>MIS quarterly</title><description>It has been more than 40 years since Blalock (1964) noted the distinction between what he called "cause" (formative) and "effect" (reflective) indicators of latent variables, and three decades since the academic literature recognized that some SEM measurement models don't fit classical test theory's assumptions about the direction of causality of the relationships between constructs and their indicators. However, recently researchers in a variety of disciplines have raised questions surrounding the correct conceptualization and operationalization of formative indicator measurement models. In these articles the authors attempted not only to illustrate the extent of measurement model misspecification in their literatures and the potential consequences of such misspecification but, more importantly, to provide needed guidance to researchers about how to determine which type of measurement model is conceptually appropriate, develop and purify scales using formative indicators, and specify structural equation models incorporating these composite latent variables.</description><subject>Coefficients</subject><subject>Construct validity</subject><subject>Constructive empiricism</subject><subject>Consumer research</subject><subject>Estimation bias</subject><subject>Marketing</subject><subject>Measurement techniques</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Reporting standards</subject><subject>Research methodology</subject><subject>Research methods</subject><subject>Research Notes</subject><subject>Specifications</subject><subject>Studies</subject><issn>0276-7783</issn><issn>2162-9730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKw0AQhhdRsFbBFxAWr7yJ7iGbTbwrxRM0ClKvwySZraltNu5uBN_eLVVh-Odivn9OhJxzdi0k0zcpTzmLcUAmgmciKbRkh2TChM4SrXN5TE68XzPGuOZ6QrrlO9JnXEHovpDObe_xc8S-QU-toSWCHx1usQ-0tC1uaNl5P2DTma6JFtvf0hl9RT_sjDRYOluNnXOYjFECUOhbWoKDD_Cn5MjAxuPZb56St_u75fwxWbw8PM1ni6SJ64cEjMigiJrnwNJapWB0q5AXXNW5FkZx5CJjTVErFIggVWagLtq0lZrXIOWUXO77Ds7GU3yo1nZ0fRxZFSJTSuc6i9DVHmqc9d6hqQbXbcF9V5xVuz9Wf3-M6MUeXftg3T_3X_8BCcpusw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Jarvis, Cheryl Burke</creator><creator>MacKenzie, Scott B.</creator><creator>Podsakoff, Philip M.</creator><general>Management Information Systems Research Center, University of Minnesota</general><general>University of Minnesota, MIS Research Center</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20120301</creationdate><title>The Negative Consequences of Measurement Model Misspecification: A Response to Aguirre-urreta and Marakas</title><author>Jarvis, Cheryl Burke ; MacKenzie, Scott B. ; Podsakoff, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-af26a9af288a04b54af7d5e1915b872f51e1260c9b5e2eea356fab9d4d371ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Coefficients</topic><topic>Construct validity</topic><topic>Constructive empiricism</topic><topic>Consumer research</topic><topic>Estimation bias</topic><topic>Marketing</topic><topic>Measurement techniques</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Reporting standards</topic><topic>Research methodology</topic><topic>Research methods</topic><topic>Research Notes</topic><topic>Specifications</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarvis, Cheryl Burke</creatorcontrib><creatorcontrib>MacKenzie, Scott B.</creatorcontrib><creatorcontrib>Podsakoff, Philip M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>MIS quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarvis, Cheryl Burke</au><au>MacKenzie, Scott B.</au><au>Podsakoff, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Negative Consequences of Measurement Model Misspecification: A Response to Aguirre-urreta and Marakas</atitle><jtitle>MIS quarterly</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>36</volume><issue>1</issue><spage>139</spage><epage>146</epage><pages>139-146</pages><issn>0276-7783</issn><eissn>2162-9730</eissn><coden>MISQDP</coden><abstract>It has been more than 40 years since Blalock (1964) noted the distinction between what he called "cause" (formative) and "effect" (reflective) indicators of latent variables, and three decades since the academic literature recognized that some SEM measurement models don't fit classical test theory's assumptions about the direction of causality of the relationships between constructs and their indicators. However, recently researchers in a variety of disciplines have raised questions surrounding the correct conceptualization and operationalization of formative indicator measurement models. In these articles the authors attempted not only to illustrate the extent of measurement model misspecification in their literatures and the potential consequences of such misspecification but, more importantly, to provide needed guidance to researchers about how to determine which type of measurement model is conceptually appropriate, develop and purify scales using formative indicators, and specify structural equation models incorporating these composite latent variables.</abstract><cop>Minneapolis</cop><pub>Management Information Systems Research Center, University of Minnesota</pub><doi>10.2307/41410410</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0276-7783
ispartof MIS quarterly, 2012-03, Vol.36 (1), p.139-146
issn 0276-7783
2162-9730
language eng
recordid cdi_proquest_journals_926557876
source EBSCOhost Business Source Ultimate; JSTOR
subjects Coefficients
Construct validity
Constructive empiricism
Consumer research
Estimation bias
Marketing
Measurement techniques
Modeling
Parametric models
Reporting standards
Research methodology
Research methods
Research Notes
Specifications
Studies
title The Negative Consequences of Measurement Model Misspecification: A Response to Aguirre-urreta and Marakas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Negative%20Consequences%20of%20Measurement%20Model%20Misspecification:%20A%20Response%20to%20Aguirre-urreta%20and%20Marakas&rft.jtitle=MIS%20quarterly&rft.au=Jarvis,%20Cheryl%20Burke&rft.date=2012-03-01&rft.volume=36&rft.issue=1&rft.spage=139&rft.epage=146&rft.pages=139-146&rft.issn=0276-7783&rft.eissn=2162-9730&rft.coden=MISQDP&rft_id=info:doi/10.2307/41410410&rft_dat=%3Cjstor_proqu%3E41410410%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-af26a9af288a04b54af7d5e1915b872f51e1260c9b5e2eea356fab9d4d371ba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926557876&rft_id=info:pmid/&rft_jstor_id=41410410&rfr_iscdi=true