Loading…
A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2
A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in p...
Saved in:
Published in: | Geoscientific Model Development 2012-01, Vol.5 (1), p.193-221 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143 |
---|---|
cites | cdi_FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143 |
container_end_page | 221 |
container_issue | 1 |
container_start_page | 193 |
container_title | Geoscientific Model Development |
container_volume | 5 |
creator | Pugh, T. A. M Cain, M Methven, J Wild, O Arnold, S. R Real, E Law, K. S Emmerson, K. M Owen, S. M Pyle, J. A Hewitt, C. N MacKenzie, A. R |
description | A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in parallel at several different institutions and here those developments have been incorporated into one "community" model and documented for the first time. The key photochemical developments include a new scheme for biogenic volatile organic compounds and updated emissions schemes. The key physical development is to evolve composition following an ensemble of trajectories within neighbouring air-masses, including a simple scheme for mixing between them via an evolving "background profile", both within the boundary layer and free troposphere. The model runs along trajectories pre-calculated using winds and temperature from meteorological analyses. In addition, boundary layer height and precipitation rates, output from the analysis model, are interpolated to trajectory points and used as inputs to the mixing and wet deposition schemes. The model is most suitable in regimes when the effects of small-scale turbulent mixing are slow relative to advection by the resolved winds so that coherent air-masses form with distinct composition and strong gradients between them. Such air-masses can persist for many days while stretching, folding and thinning. Lagrangian models offer a useful framework for picking apart the processes of air-mass evolution over inter-continental distances, without being hindered by the numerical diffusion inherent to global Eulerian models. The model, including different box and trajectory modes, is described and some output for each of the modes is presented for evaluation. The model is available for download from a Subversion-controlled repository by contacting the corresponding authors. |
doi_str_mv | 10.5194/gmd-5-193-2012 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_926948232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481458932</galeid><doaj_id>oai_doaj_org_article_5ff2a93b190941efa232a631acc69d88</doaj_id><sourcerecordid>A481458932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143</originalsourceid><addsrcrecordid>eNptksGK2zAQhk1podttrz2L9tIcnEq2ZVu9GdPuBgKF1ncxlmRbIZZcSVk2z9UXrLJZQgOLQBqNvvmHGU2SfCR4TQkrvo6zTGlKWJ5mmGSvkhvCGElZifPX_9lvk3fe7zAuWVVWN8nfBm1hdGBGDQbNVqo9sgMC7dIZvEfLZIMVk5q1D-6IwEg060dtRnTwpx1QcLBTItj4qoxXc79X31CYFGph7p2Wo0Kds4v1y6ScFvFy4S_p2kuCJiaIhPGLdQF9aXXXHdumW6EH5by2BhXr7H3yZoC9Vx-ez9uk-_G9a-_T7c-7TdtsU0FxFVJaMVZkktEyr5miJaZUQFVhYDWlBA9l30siQVUESqiGvJaY1JICVCpaRX6bbM6y0sKOL07P4I7cguZPDutGDi5osVecDkMGLO8Jw6wgaoAsz6DMCQhRMlnXUWt11ppgfyV132z5yRc_JK8JzR5IZD-d2cXZPwflA9_ZgzOxUs6ykhV1FI_Q5zM0QsyvzWDjP4jYRMGboiYFrdkTtX6BikvGfgtr1KCj_ypgdRUQmaAewwgH7_nm968XxYWz3js1XAojmJ8mkseJ5JTHieSnicz_Afne0kk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926948232</pqid></control><display><type>article</type><title>A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2</title><source>Publicly Available Content (ProQuest)</source><creator>Pugh, T. A. M ; Cain, M ; Methven, J ; Wild, O ; Arnold, S. R ; Real, E ; Law, K. S ; Emmerson, K. M ; Owen, S. M ; Pyle, J. A ; Hewitt, C. N ; MacKenzie, A. R</creator><creatorcontrib>Pugh, T. A. M ; Cain, M ; Methven, J ; Wild, O ; Arnold, S. R ; Real, E ; Law, K. S ; Emmerson, K. M ; Owen, S. M ; Pyle, J. A ; Hewitt, C. N ; MacKenzie, A. R</creatorcontrib><description>A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in parallel at several different institutions and here those developments have been incorporated into one "community" model and documented for the first time. The key photochemical developments include a new scheme for biogenic volatile organic compounds and updated emissions schemes. The key physical development is to evolve composition following an ensemble of trajectories within neighbouring air-masses, including a simple scheme for mixing between them via an evolving "background profile", both within the boundary layer and free troposphere. The model runs along trajectories pre-calculated using winds and temperature from meteorological analyses. In addition, boundary layer height and precipitation rates, output from the analysis model, are interpolated to trajectory points and used as inputs to the mixing and wet deposition schemes. The model is most suitable in regimes when the effects of small-scale turbulent mixing are slow relative to advection by the resolved winds so that coherent air-masses form with distinct composition and strong gradients between them. Such air-masses can persist for many days while stretching, folding and thinning. Lagrangian models offer a useful framework for picking apart the processes of air-mass evolution over inter-continental distances, without being hindered by the numerical diffusion inherent to global Eulerian models. The model, including different box and trajectory modes, is described and some output for each of the modes is presented for evaluation. The model is available for download from a Subversion-controlled repository by contacting the corresponding authors.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>EISSN: 1991-959X</identifier><identifier>DOI: 10.5194/gmd-5-193-2012</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Atmospheric and Oceanic Physics ; Physics ; Troposphere ; Volatile organic compounds</subject><ispartof>Geoscientific Model Development, 2012-01, Vol.5 (1), p.193-221</ispartof><rights>COPYRIGHT 2012 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143</citedby><cites>FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143</cites><orcidid>0000-0003-4479-903X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/926948232/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/926948232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,75096</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00638152$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pugh, T. A. M</creatorcontrib><creatorcontrib>Cain, M</creatorcontrib><creatorcontrib>Methven, J</creatorcontrib><creatorcontrib>Wild, O</creatorcontrib><creatorcontrib>Arnold, S. R</creatorcontrib><creatorcontrib>Real, E</creatorcontrib><creatorcontrib>Law, K. S</creatorcontrib><creatorcontrib>Emmerson, K. M</creatorcontrib><creatorcontrib>Owen, S. M</creatorcontrib><creatorcontrib>Pyle, J. A</creatorcontrib><creatorcontrib>Hewitt, C. N</creatorcontrib><creatorcontrib>MacKenzie, A. R</creatorcontrib><title>A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2</title><title>Geoscientific Model Development</title><description>A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in parallel at several different institutions and here those developments have been incorporated into one "community" model and documented for the first time. The key photochemical developments include a new scheme for biogenic volatile organic compounds and updated emissions schemes. The key physical development is to evolve composition following an ensemble of trajectories within neighbouring air-masses, including a simple scheme for mixing between them via an evolving "background profile", both within the boundary layer and free troposphere. The model runs along trajectories pre-calculated using winds and temperature from meteorological analyses. In addition, boundary layer height and precipitation rates, output from the analysis model, are interpolated to trajectory points and used as inputs to the mixing and wet deposition schemes. The model is most suitable in regimes when the effects of small-scale turbulent mixing are slow relative to advection by the resolved winds so that coherent air-masses form with distinct composition and strong gradients between them. Such air-masses can persist for many days while stretching, folding and thinning. Lagrangian models offer a useful framework for picking apart the processes of air-mass evolution over inter-continental distances, without being hindered by the numerical diffusion inherent to global Eulerian models. The model, including different box and trajectory modes, is described and some output for each of the modes is presented for evaluation. The model is available for download from a Subversion-controlled repository by contacting the corresponding authors.</description><subject>Analysis</subject><subject>Atmospheric and Oceanic Physics</subject><subject>Physics</subject><subject>Troposphere</subject><subject>Volatile organic compounds</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><issn>1991-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksGK2zAQhk1podttrz2L9tIcnEq2ZVu9GdPuBgKF1ncxlmRbIZZcSVk2z9UXrLJZQgOLQBqNvvmHGU2SfCR4TQkrvo6zTGlKWJ5mmGSvkhvCGElZifPX_9lvk3fe7zAuWVVWN8nfBm1hdGBGDQbNVqo9sgMC7dIZvEfLZIMVk5q1D-6IwEg060dtRnTwpx1QcLBTItj4qoxXc79X31CYFGph7p2Wo0Kds4v1y6ScFvFy4S_p2kuCJiaIhPGLdQF9aXXXHdumW6EH5by2BhXr7H3yZoC9Vx-ez9uk-_G9a-_T7c-7TdtsU0FxFVJaMVZkktEyr5miJaZUQFVhYDWlBA9l30siQVUESqiGvJaY1JICVCpaRX6bbM6y0sKOL07P4I7cguZPDutGDi5osVecDkMGLO8Jw6wgaoAsz6DMCQhRMlnXUWt11ppgfyV132z5yRc_JK8JzR5IZD-d2cXZPwflA9_ZgzOxUs6ykhV1FI_Q5zM0QsyvzWDjP4jYRMGboiYFrdkTtX6BikvGfgtr1KCj_ypgdRUQmaAewwgH7_nm968XxYWz3js1XAojmJ8mkseJ5JTHieSnicz_Afne0kk</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Pugh, T. A. M</creator><creator>Cain, M</creator><creator>Methven, J</creator><creator>Wild, O</creator><creator>Arnold, S. R</creator><creator>Real, E</creator><creator>Law, K. S</creator><creator>Emmerson, K. M</creator><creator>Owen, S. M</creator><creator>Pyle, J. A</creator><creator>Hewitt, C. N</creator><creator>MacKenzie, A. R</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4479-903X</orcidid></search><sort><creationdate>20120101</creationdate><title>A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2</title><author>Pugh, T. A. M ; Cain, M ; Methven, J ; Wild, O ; Arnold, S. R ; Real, E ; Law, K. S ; Emmerson, K. M ; Owen, S. M ; Pyle, J. A ; Hewitt, C. N ; MacKenzie, A. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Atmospheric and Oceanic Physics</topic><topic>Physics</topic><topic>Troposphere</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugh, T. A. M</creatorcontrib><creatorcontrib>Cain, M</creatorcontrib><creatorcontrib>Methven, J</creatorcontrib><creatorcontrib>Wild, O</creatorcontrib><creatorcontrib>Arnold, S. R</creatorcontrib><creatorcontrib>Real, E</creatorcontrib><creatorcontrib>Law, K. S</creatorcontrib><creatorcontrib>Emmerson, K. M</creatorcontrib><creatorcontrib>Owen, S. M</creatorcontrib><creatorcontrib>Pyle, J. A</creatorcontrib><creatorcontrib>Hewitt, C. N</creatorcontrib><creatorcontrib>MacKenzie, A. R</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugh, T. A. M</au><au>Cain, M</au><au>Methven, J</au><au>Wild, O</au><au>Arnold, S. R</au><au>Real, E</au><au>Law, K. S</au><au>Emmerson, K. M</au><au>Owen, S. M</au><au>Pyle, J. A</au><au>Hewitt, C. N</au><au>MacKenzie, A. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2</atitle><jtitle>Geoscientific Model Development</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>5</volume><issue>1</issue><spage>193</spage><epage>221</epage><pages>193-221</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><eissn>1991-959X</eissn><abstract>A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in parallel at several different institutions and here those developments have been incorporated into one "community" model and documented for the first time. The key photochemical developments include a new scheme for biogenic volatile organic compounds and updated emissions schemes. The key physical development is to evolve composition following an ensemble of trajectories within neighbouring air-masses, including a simple scheme for mixing between them via an evolving "background profile", both within the boundary layer and free troposphere. The model runs along trajectories pre-calculated using winds and temperature from meteorological analyses. In addition, boundary layer height and precipitation rates, output from the analysis model, are interpolated to trajectory points and used as inputs to the mixing and wet deposition schemes. The model is most suitable in regimes when the effects of small-scale turbulent mixing are slow relative to advection by the resolved winds so that coherent air-masses form with distinct composition and strong gradients between them. Such air-masses can persist for many days while stretching, folding and thinning. Lagrangian models offer a useful framework for picking apart the processes of air-mass evolution over inter-continental distances, without being hindered by the numerical diffusion inherent to global Eulerian models. The model, including different box and trajectory modes, is described and some output for each of the modes is presented for evaluation. The model is available for download from a Subversion-controlled repository by contacting the corresponding authors.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-5-193-2012</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4479-903X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2012-01, Vol.5 (1), p.193-221 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X 1991-959X |
language | eng |
recordid | cdi_proquest_journals_926948232 |
source | Publicly Available Content (ProQuest) |
subjects | Analysis Atmospheric and Oceanic Physics Physics Troposphere Volatile organic compounds |
title | A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T22%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lagrangian%20model%20of%20air-mass%20photochemistry%20and%20mixing%20using%20a%20trajectory%20ensemble:%20the%20Cambridge%20Tropospheric%20Trajectory%20model%20of%20Chemistry%20And%20Transport%20(CiTTyCAT)%20version%204.2&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Pugh,%20T.%20A.%20M&rft.date=2012-01-01&rft.volume=5&rft.issue=1&rft.spage=193&rft.epage=221&rft.pages=193-221&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-5-193-2012&rft_dat=%3Cgale_doaj_%3EA481458932%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-579942d956389e56055ca770a985510f6bbd1dae71a6a7f38d018d5aa7ed0143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926948232&rft_id=info:pmid/&rft_galeid=A481458932&rfr_iscdi=true |