Loading…
A Note on Bipartite Graph Tiling
Bipartite graph tiling was studied by Zhao [SIAM J. Discrete Math., 23 (2009), pp. 888-900], who gave the best possible minimum degree conditions for a balanced bipartite graph on $2ms$ vertices to contain $m$ vertex disjoint copies of $K_{s,s}$. Let $s 2s+1$. We give the best possible minimum degre...
Saved in:
Published in: | SIAM journal on discrete mathematics 2011-01, Vol.25 (4), p.1477-1489 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43 |
container_end_page | 1489 |
container_issue | 4 |
container_start_page | 1477 |
container_title | SIAM journal on discrete mathematics |
container_volume | 25 |
creator | Czygrinow, Andrzej DeBiasio, Louis |
description | Bipartite graph tiling was studied by Zhao [SIAM J. Discrete Math., 23 (2009), pp. 888-900], who gave the best possible minimum degree conditions for a balanced bipartite graph on $2ms$ vertices to contain $m$ vertex disjoint copies of $K_{s,s}$. Let $s 2s+1$. We give the best possible minimum degree condition in this case. |
doi_str_mv | 10.1137/100788203 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_928467230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611423021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43</originalsourceid><addsrcrecordid>eNo9T01Lw0AUXETBWD34D4I3D9H33r5kN8dabBWKXup5eUk2mlKbuJse_PdGKl7mA4YZRqlrhDtEbe4RwFhLoE9UglDmmUEuTlUCdtJsAc_VRYxbAGTGPFHpPH3pR5_2-_ShGySM3WRWQYaPdNPtuv37pTprZRf91R_P1NvycbN4ytavq-fFfJ3VVOKYiS8qAzkQlTWQbUikqcTbWkPBltlSxaLJQJt7qYpGQ161PCFzCSSsZ-rm2DuE_uvg4-i2_SHsp0lXkuXCkIYpdHsM1aGPMfjWDaH7lPDtENzvf_f_X_8As4NI4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928467230</pqid></control><display><type>article</type><title>A Note on Bipartite Graph Tiling</title><source>ABI/INFORM Global</source><source>SIAM_工业和应用数学学会过刊</source><creator>Czygrinow, Andrzej ; DeBiasio, Louis</creator><creatorcontrib>Czygrinow, Andrzej ; DeBiasio, Louis</creatorcontrib><description>Bipartite graph tiling was studied by Zhao [SIAM J. Discrete Math., 23 (2009), pp. 888-900], who gave the best possible minimum degree conditions for a balanced bipartite graph on $2ms$ vertices to contain $m$ vertex disjoint copies of $K_{s,s}$. Let $s<t$ be fixed positive integers. Hladký and Schacht [SIAM J. Discrete Math., 24 (2010), pp. 357-362] gave minimum degree conditions for a balanced bipartite graph on $2m(s+t)$ vertices to contain $m$ vertex disjoint copies of $K_{s,t}$. Their results were best possible, except in the case when $m$ is odd and $t> 2s+1$. We give the best possible minimum degree condition in this case.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/100788203</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Graphs</subject><ispartof>SIAM journal on discrete mathematics, 2011-01, Vol.25 (4), p.1477-1489</ispartof><rights>[Copyright] © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43</citedby><cites>FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/928467230?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Czygrinow, Andrzej</creatorcontrib><creatorcontrib>DeBiasio, Louis</creatorcontrib><title>A Note on Bipartite Graph Tiling</title><title>SIAM journal on discrete mathematics</title><description>Bipartite graph tiling was studied by Zhao [SIAM J. Discrete Math., 23 (2009), pp. 888-900], who gave the best possible minimum degree conditions for a balanced bipartite graph on $2ms$ vertices to contain $m$ vertex disjoint copies of $K_{s,s}$. Let $s<t$ be fixed positive integers. Hladký and Schacht [SIAM J. Discrete Math., 24 (2010), pp. 357-362] gave minimum degree conditions for a balanced bipartite graph on $2m(s+t)$ vertices to contain $m$ vertex disjoint copies of $K_{s,t}$. Their results were best possible, except in the case when $m$ is odd and $t> 2s+1$. We give the best possible minimum degree condition in this case.</description><subject>Graphs</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9T01Lw0AUXETBWD34D4I3D9H33r5kN8dabBWKXup5eUk2mlKbuJse_PdGKl7mA4YZRqlrhDtEbe4RwFhLoE9UglDmmUEuTlUCdtJsAc_VRYxbAGTGPFHpPH3pR5_2-_ShGySM3WRWQYaPdNPtuv37pTprZRf91R_P1NvycbN4ytavq-fFfJ3VVOKYiS8qAzkQlTWQbUikqcTbWkPBltlSxaLJQJt7qYpGQ161PCFzCSSsZ-rm2DuE_uvg4-i2_SHsp0lXkuXCkIYpdHsM1aGPMfjWDaH7lPDtENzvf_f_X_8As4NI4Q</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Czygrinow, Andrzej</creator><creator>DeBiasio, Louis</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>A Note on Bipartite Graph Tiling</title><author>Czygrinow, Andrzej ; DeBiasio, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czygrinow, Andrzej</creatorcontrib><creatorcontrib>DeBiasio, Louis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czygrinow, Andrzej</au><au>DeBiasio, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Bipartite Graph Tiling</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>1477</spage><epage>1489</epage><pages>1477-1489</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>Bipartite graph tiling was studied by Zhao [SIAM J. Discrete Math., 23 (2009), pp. 888-900], who gave the best possible minimum degree conditions for a balanced bipartite graph on $2ms$ vertices to contain $m$ vertex disjoint copies of $K_{s,s}$. Let $s<t$ be fixed positive integers. Hladký and Schacht [SIAM J. Discrete Math., 24 (2010), pp. 357-362] gave minimum degree conditions for a balanced bipartite graph on $2m(s+t)$ vertices to contain $m$ vertex disjoint copies of $K_{s,t}$. Their results were best possible, except in the case when $m$ is odd and $t> 2s+1$. We give the best possible minimum degree condition in this case.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100788203</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2011-01, Vol.25 (4), p.1477-1489 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_928467230 |
source | ABI/INFORM Global; SIAM_工业和应用数学学会过刊 |
subjects | Graphs |
title | A Note on Bipartite Graph Tiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Bipartite%20Graph%20Tiling&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=Czygrinow,%20Andrzej&rft.date=2011-01-01&rft.volume=25&rft.issue=4&rft.spage=1477&rft.epage=1489&rft.pages=1477-1489&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/100788203&rft_dat=%3Cproquest_cross%3E2611423021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ae6b7050229c028d2aadbae8c306484482b4a3270f5eab6d305bf430544902a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=928467230&rft_id=info:pmid/&rfr_iscdi=true |