Loading…
The GA and the GWAS: Using Genetic Algorithms to Search for Multilocus Associations
Enormous data collection efforts and improvements in technology have made large genome-wide association studies a promising approach for better understanding the genetics of common diseases. Still, the knowledge gained from these studies may be extended even further by testing the hypothesis that ge...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2012-05, Vol.9 (3), p.899-910 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enormous data collection efforts and improvements in technology have made large genome-wide association studies a promising approach for better understanding the genetics of common diseases. Still, the knowledge gained from these studies may be extended even further by testing the hypothesis that genetic susceptibility is due to the combined effect of multiple variants or interactions between variants. Here, we explore and evaluate the use of a genetic algorithm to discover groups of SNPs (of size 2, 3, or 4) that are jointly associated with bipolar disorder. The algorithm is guided by the structure of a gene interaction network, and is able to find groups of SNPs that are strongly associated with the disease, while performing far fewer statistical tests than other methods. |
---|---|
ISSN: | 1545-5963 1557-9964 |
DOI: | 10.1109/TCBB.2011.145 |