Loading…
Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass
The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump‐on‐tail...
Saved in:
Published in: | Journal of Geophysical Research: Space Physics 2012-03, Vol.117 (A3), p.n/a |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63 |
container_end_page | n/a |
container_issue | A3 |
container_start_page | |
container_title | Journal of Geophysical Research: Space Physics |
container_volume | 117 |
creator | Hutchinson, I. H. |
description | The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump‐on‐tail which is unstable appears on the electrons' parallel velocity distribution function because of the convective non‐conservation of parallel energy (drift‐energization). It arises regardless of any non‐thermal features on the external electron velocity distribution. The detailed electron distribution function throughout the wake is calculated by integration along orbits; and the substantial energy level of resulting electron plasma (Langmuir) turbulence is evaluated quasi‐linearly. It peaks near the wake axis. If the mass of the electrons is artificially enhanced, for example in order to make numerical simulation feasible, then much more unstable electron distributions arise; but these are caused by the unphysical mass ratio.
Key Points
Electron instability arises in magnetized plasma (e.g. moon) wakes
The key mechanism is energy non‐conservation through convection
Quasi‐linear turbulence level is given and is strongly affected by mass‐ratio |
doi_str_mv | 10.1029/2011JA017119 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_963967784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607293691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq2qSI2AW3_AqhK3brHHX-tjFEHKR0FUrcrNmvXayLDZTe0NIfx6NgpFPTGXkWae932lGUI-M_qNUTDHQBk7n1KmGTMfyASYVCUAhY9kQpmoSgqgP5HDnO_pWEIqQdmE1Cetd0Pqu-LRt72Lw6ZoYh5SrFdDHKexywPWsd0uYlcs8K7zQ3z2TbFsMS-wWOODzwV2TYFpiCG6iG3h_5kuMOcDshewzf7wte-T36cnv2bfy8vr-dlselk6wQ2UdYOmorV3qpFBGaNqUFWjqBQCgglc1Uzy4BkNFW-ckRScMIDUN0Jrg4rvky8732Xq_658Hux9v0rdGGmN4kZpXYl3IdBSG1BmhL7uIJf6nJMPdpniAtPGMmq3x7b_H3vEj149MTtsQ8LOxfymAVkBq-Q2m--4dWz95l1Pez7_OQWmFIyqcqca3-Kf3lSYHqzSXEv752puL25_nMrZ7Y2V_AXn_Zwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927579269</pqid></control><display><type>article</type><title>Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Hutchinson, I. H.</creator><creatorcontrib>Hutchinson, I. H.</creatorcontrib><description>The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump‐on‐tail which is unstable appears on the electrons' parallel velocity distribution function because of the convective non‐conservation of parallel energy (drift‐energization). It arises regardless of any non‐thermal features on the external electron velocity distribution. The detailed electron distribution function throughout the wake is calculated by integration along orbits; and the substantial energy level of resulting electron plasma (Langmuir) turbulence is evaluated quasi‐linearly. It peaks near the wake axis. If the mass of the electrons is artificially enhanced, for example in order to make numerical simulation feasible, then much more unstable electron distributions arise; but these are caused by the unphysical mass ratio.
Key Points
Electron instability arises in magnetized plasma (e.g. moon) wakes
The key mechanism is energy non‐conservation through convection
Quasi‐linear turbulence level is given and is strongly affected by mass‐ratio</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2011JA017119</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Energy conservation ; Exact sciences and technology ; instability ; Magnetic fields ; Plasma physics ; Space ; Velocity distribution ; wake</subject><ispartof>Journal of Geophysical Research: Space Physics, 2012-03, Vol.117 (A3), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Geophysical Union 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63</citedby><cites>FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JA017119$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JA017119$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11493,27901,27902,46443,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25821854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutchinson, I. H.</creatorcontrib><title>Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass</title><title>Journal of Geophysical Research: Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump‐on‐tail which is unstable appears on the electrons' parallel velocity distribution function because of the convective non‐conservation of parallel energy (drift‐energization). It arises regardless of any non‐thermal features on the external electron velocity distribution. The detailed electron distribution function throughout the wake is calculated by integration along orbits; and the substantial energy level of resulting electron plasma (Langmuir) turbulence is evaluated quasi‐linearly. It peaks near the wake axis. If the mass of the electrons is artificially enhanced, for example in order to make numerical simulation feasible, then much more unstable electron distributions arise; but these are caused by the unphysical mass ratio.
Key Points
Electron instability arises in magnetized plasma (e.g. moon) wakes
The key mechanism is energy non‐conservation through convection
Quasi‐linear turbulence level is given and is strongly affected by mass‐ratio</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy conservation</subject><subject>Exact sciences and technology</subject><subject>instability</subject><subject>Magnetic fields</subject><subject>Plasma physics</subject><subject>Space</subject><subject>Velocity distribution</subject><subject>wake</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhq2qSI2AW3_AqhK3brHHX-tjFEHKR0FUrcrNmvXayLDZTe0NIfx6NgpFPTGXkWae932lGUI-M_qNUTDHQBk7n1KmGTMfyASYVCUAhY9kQpmoSgqgP5HDnO_pWEIqQdmE1Cetd0Pqu-LRt72Lw6ZoYh5SrFdDHKexywPWsd0uYlcs8K7zQ3z2TbFsMS-wWOODzwV2TYFpiCG6iG3h_5kuMOcDshewzf7wte-T36cnv2bfy8vr-dlselk6wQ2UdYOmorV3qpFBGaNqUFWjqBQCgglc1Uzy4BkNFW-ckRScMIDUN0Jrg4rvky8732Xq_658Hux9v0rdGGmN4kZpXYl3IdBSG1BmhL7uIJf6nJMPdpniAtPGMmq3x7b_H3vEj149MTtsQ8LOxfymAVkBq-Q2m--4dWz95l1Pez7_OQWmFIyqcqca3-Kf3lSYHqzSXEv752puL25_nMrZ7Y2V_AXn_Zwo</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hutchinson, I. H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201203</creationdate><title>Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass</title><author>Hutchinson, I. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy conservation</topic><topic>Exact sciences and technology</topic><topic>instability</topic><topic>Magnetic fields</topic><topic>Plasma physics</topic><topic>Space</topic><topic>Velocity distribution</topic><topic>wake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchinson, I. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchinson, I. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-03</date><risdate>2012</risdate><volume>117</volume><issue>A3</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump‐on‐tail which is unstable appears on the electrons' parallel velocity distribution function because of the convective non‐conservation of parallel energy (drift‐energization). It arises regardless of any non‐thermal features on the external electron velocity distribution. The detailed electron distribution function throughout the wake is calculated by integration along orbits; and the substantial energy level of resulting electron plasma (Langmuir) turbulence is evaluated quasi‐linearly. It peaks near the wake axis. If the mass of the electrons is artificially enhanced, for example in order to make numerical simulation feasible, then much more unstable electron distributions arise; but these are caused by the unphysical mass ratio.
Key Points
Electron instability arises in magnetized plasma (e.g. moon) wakes
The key mechanism is energy non‐conservation through convection
Quasi‐linear turbulence level is given and is strongly affected by mass‐ratio</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JA017119</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Space Physics, 2012-03, Vol.117 (A3), p.n/a |
issn | 0148-0227 2169-9380 2156-2202 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_963967784 |
source | Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive |
subjects | Earth sciences Earth, ocean, space Energy conservation Exact sciences and technology instability Magnetic fields Plasma physics Space Velocity distribution wake |
title | Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20velocity%20distribution%20instability%20in%20magnetized%20plasma%20wakes%20and%20artificial%20electron%20mass&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Hutchinson,%20I.%20H.&rft.date=2012-03&rft.volume=117&rft.issue=A3&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JA017119&rft_dat=%3Cproquest_cross%3E2607293691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4392-bda980bec6d5f6996b268d605442f9f36b153fe10f83dc9502c492a0ed4779a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=927579269&rft_id=info:pmid/&rfr_iscdi=true |