Loading…
A 12-Bit 3 GS/s Pipeline ADC With 0.4 mm ^ and 500 mW in 40 nm Digital CMOS
A 12-bit 3 GS/s 40 nm two-way time-interleaved pipeline analog-to-digital converter (ADC) is presented. The proposed adaptive power/ground architecture eliminates the headroom limitations due to the deeply scaled power supply in nanometer CMOS technologies, while preserving the intrinsic speed of th...
Saved in:
Published in: | IEEE journal of solid-state circuits 2012-04, Vol.47 (4), p.1013-1021 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 12-bit 3 GS/s 40 nm two-way time-interleaved pipeline analog-to-digital converter (ADC) is presented. The proposed adaptive power/ground architecture eliminates the headroom limitations due to the deeply scaled power supply in nanometer CMOS technologies, while preserving the intrinsic speed of thin-oxide MOSFETs with minimum channel length for key analog blocks. Moreover, in terms of the signal swing, the proposed reference extrapolation scheme offers a smooth transition between the multiplying digital-to-analog converter stages and the last flash stage. With these two techniques, the ADC achieves a SNR of 61 dB and a DNL of -0.5/+0.5 LSB, while consuming 500 mW at a 3 GS/s sampling rate and occupying an area of 0.4 mm 2 in 40 nm CMOS process. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2012.2185192 |