Loading…
A Four-Channel 94-GHz SiGe-Based Digital Beamforming FMCW Radar
This paper presents a multi-channel frequency-modulated continuous-wave (FMCW) radar sensor operating in the frequency range from 91 to 97 GHz. The millimeter-wave radar sensor utilizes an SiGe chipset comprising a single signal-generation chip and multiple monostatic transceiver (TRX) chips, which...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2012-03, Vol.60 (3), p.861-869 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a multi-channel frequency-modulated continuous-wave (FMCW) radar sensor operating in the frequency range from 91 to 97 GHz. The millimeter-wave radar sensor utilizes an SiGe chipset comprising a single signal-generation chip and multiple monostatic transceiver (TRX) chips, which are based on a 200-GHz f T HBT technology. The front end is built on an RF soft substrate in chip-on-board technology and employs a nonuniformly distributed antenna array to improve the angular resolution. The synthesis of ten virtual antennas achieved by a multiple-input multiple-output technique allows the virtual array aperture to be maximized. The fundamental-wave voltage-controlled oscillator achieves a single-sideband phase noise of -88 dBc/Hz at 1-MHz offset frequency. The TX provides a saturated output power of 6.5 dBm, and the mixer within the TRX achieves a gain and a double sideband noise figure of 11.5 and 12 dB, respectively. Possible applications include radar sensing for range and angle detection, material characterization, and imaging. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2011.2181187 |