Loading…

Total-dose radiation response of hafnium-silicate capacitors

Hafnium-silicate capacitors with 4.5-nm equivalent oxide thickness gate insulators were irradiated with 10-keV X-rays. The midgap and flatband voltage shifts in these devices increase linearly with dose and are significantly larger than the shifts seen in high quality, thermal SiO/sub 2/ gate oxides...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2002-12, Vol.49 (6), p.3191-3196
Main Authors: Felix, J.A., Fleetwood, D.M., Schrimpf, R.D., Hong, J.G., Lucovsky, G., Schwank, J.R., Shaneyfelt, M.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hafnium-silicate capacitors with 4.5-nm equivalent oxide thickness gate insulators were irradiated with 10-keV X-rays. The midgap and flatband voltage shifts in these devices increase linearly with dose and are significantly larger than the shifts seen in high quality, thermal SiO/sub 2/ gate oxides of similar electrical thickness. The standard trapping efficiency equation is adapted for calculating effective trapping efficiencies in alternative dielectrics and used to compare the radiation response of hafnium silicate to SiO/sub 2/ from several manufacturers. The effects of common reliability screens such as "burn-in" and bias stress tests are also discussed. It is shown that baking these devices can degrade their capacitance-voltage characteristics, and large applied voltages inject excess charge into the dielectric, which can lead to a misinterpretation of the radiation results. However, the radiation responses of these devices, coupled with the demonstrated resistance of these films to heavy-ion induced gate rupture in previous studies, suggest that alternative dielectrics to SiO/sub 2/ potentially could be integrated into future electronics technologies for many low-power space applications.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2002.805392