Loading…

Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore

Based on a nonlinear optical polymer with a highly nonlinear chromophore (CLD) dispersed in an amorphous polycarbonate (APC), we have developed electrooptic (EO) polymer modulators operating at 1550-nm wavelength with low loss and good thermal stability. By incorporating polymer insulation layer, pu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2001-09, Vol.7 (5), p.826-835
Main Authors: Min-Cheol Oh, Hua Zhang, Cheng Zhang, Erlig, H., Yian Chang, Tsap, B., Chang, D., Szep, A., Steier, W.H., Fetterman, H.R., Dalton, L.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on a nonlinear optical polymer with a highly nonlinear chromophore (CLD) dispersed in an amorphous polycarbonate (APC), we have developed electrooptic (EO) polymer modulators operating at 1550-nm wavelength with low loss and good thermal stability. By incorporating polymer insulation layer, push-pull poling was successfully performed without film damages. We also demonstrated that the propagation loss of the EO polymer waveguide could be reduced as low as 1.2 dB/cm at 1550 nm when the large core waveguide structure was incorporated. The long-term reliabilities of the EO polymer modulator made of CLD/APC polymer were investigated. When the modulator was hermetically sealed in an inert gas, the V/sub /spl pi// change of a Mach-Zehnder modulator was negligible over 30 d of operation with 20-mW exposure to the waveguide input. In the thermal stability measurement, 25% V/sub /spl pi// increase was observed from the sample heated to 60/spl deg/C over 40 d, though the sample left at room temperature showed no decay of nonlinearity.
ISSN:1077-260X
1558-4542
DOI:10.1109/2944.979344