Loading…

Identification of a Class of Novel Tubulin Inhibitors

We previously developed a series of anticancer agents based on cyclooxygenase-2 (COX-2) inhibitor nimesulide as a lead compound. However, the molecular targets of these agents still remain unclear. In this study, we synthesized a biotinylated probe based on a representative molecule of the compound...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2012-04, Vol.55 (7), p.3425-3435
Main Authors: Yi, Xin, Zhong, Bo, Smith, Kerri M, Geldenhuys, Werner J, Feng, Ye, Pink, John J, Dowlati, Afshin, Xu, Yan, Zhou, Aimin, Su, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We previously developed a series of anticancer agents based on cyclooxygenase-2 (COX-2) inhibitor nimesulide as a lead compound. However, the molecular targets of these agents still remain unclear. In this study, we synthesized a biotinylated probe based on a representative molecule of the compound library and performed protein pull-down assays to purify the anticancer targets of the compound. Via proteomic approaches, the major proteins bound to the probe were identified to be tubulin and heat shock protein 27 (Hsp27), and the compound inhibited tubulin polymerization by binding at the colchicine domain. However, the tubulin inhibitory effect of the compound activated the Hsp27 phosphorylation and possibly overrode the direct Hsp27 inhibitory effects, which made it difficult to solely validate the Hsp27 target. Taken together, the compound was a dual ligand of tubulin and Hsp27, inhibited tubulin polymerization, and had the potential to be a class of new chemotherapeutic agents.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm300100d