Loading…

Rigid-Motion-Invariant Classification of 3-D Textures

This paper studies the problem of 3-D rigid-motion- invariant texture discrimination for discrete 3-D textures that are spatially homogeneous by modeling them as stationary Gaussian random fields. The latter property and our formulation of a 3-D rigid motion of a texture reduce the problem to the st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2012-05, Vol.21 (5), p.2449-2463
Main Authors: Jain, S., Papadakis, M., Upadhyay, S., Azencott, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3
cites cdi_FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3
container_end_page 2463
container_issue 5
container_start_page 2449
container_title IEEE transactions on image processing
container_volume 21
creator Jain, S.
Papadakis, M.
Upadhyay, S.
Azencott, R.
description This paper studies the problem of 3-D rigid-motion- invariant texture discrimination for discrete 3-D textures that are spatially homogeneous by modeling them as stationary Gaussian random fields. The latter property and our formulation of a 3-D rigid motion of a texture reduce the problem to the study of 3-D rotations of discrete textures. We formally develop the concept of 3-D texture rotations in the 3-D digital domain. We use this novel concept to define a "distance" between 3-D textures that remains invariant under all 3-D rigid motions of the texture. This concept of "distance" can be used for a monoscale or a mill tiscale 3-D rigid- motion-invariant testing of the statistical similarity of the 3-D textures. To compute the "distance" between any two rotations R 1 and R 2 of two given 3-D textures, we use the Kullback-Leibler divergence between 3-D Gaussian Markov random fields fitted to the rotated texture data. Then, the 3-D rigid-motion-invariant texture distance is the integral average, with respect to the Haar measure of the group SO(3), of all of these divergences when rotations R 1 and R 2 vary throughout SO(3). We also present an algorithm enabling the computation of the proposed 3-D rigid-motion-invariant texture distance as well as rules for 3-D rigid-motion-invariant texture discrimination/classification and experimental results demonstrating the capabilities of the proposed 3-D rigid-motion texture discrimination rules when applied in a multiscale setting, even on very general 3-D texture models.
doi_str_mv 10.1109/TIP.2012.2185939
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008825883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6140571</ieee_id><sourcerecordid>1022906678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3</originalsourceid><addsrcrecordid>eNqN0UtLxDAQB_Agiu-7IMiCCF66Tl5NcpT1taAosp5L0p1KpNtq0op-e1N2VfDkKYH5zZD5h5ADCmNKwZzNpg9jBpSNGdXScLNGtqkRNAMQbD3dQapMUWG2yE6MLwBUSJpvki3GmFZM0G0iH_2zn2d3befbJps27zZ423SjSW1j9JUv7VAYtdWIZxejGX50fcC4RzYqW0fcX5275Onqcja5yW7vr6eT89usFJJ1maGVFgK0Qs6dds6VqLnlaIzOnZ47NBYAGeRcclFpZRVzSqFzZl6aXFq-S06Xc19D-9Zj7IqFjyXWtW2w7WNBgTEDea70PyhozaTWPNHjP_Sl7UOTFhkUE0YIbZKCpSpDG2PAqngNfmHDZ0LFkH6R0i-G9ItV-qnlaDW4dwuc_zR8x53AyQrYWNq6CrYpffx1cnghg-QOl84j4k85pyJ9KOVfQmKSQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1002494489</pqid></control><display><type>article</type><title>Rigid-Motion-Invariant Classification of 3-D Textures</title><source>IEEE Xplore (Online service)</source><creator>Jain, S. ; Papadakis, M. ; Upadhyay, S. ; Azencott, R.</creator><creatorcontrib>Jain, S. ; Papadakis, M. ; Upadhyay, S. ; Azencott, R.</creatorcontrib><description>This paper studies the problem of 3-D rigid-motion- invariant texture discrimination for discrete 3-D textures that are spatially homogeneous by modeling them as stationary Gaussian random fields. The latter property and our formulation of a 3-D rigid motion of a texture reduce the problem to the study of 3-D rotations of discrete textures. We formally develop the concept of 3-D texture rotations in the 3-D digital domain. We use this novel concept to define a "distance" between 3-D textures that remains invariant under all 3-D rigid motions of the texture. This concept of "distance" can be used for a monoscale or a mill tiscale 3-D rigid- motion-invariant testing of the statistical similarity of the 3-D textures. To compute the "distance" between any two rotations R 1 and R 2 of two given 3-D textures, we use the Kullback-Leibler divergence between 3-D Gaussian Markov random fields fitted to the rotated texture data. Then, the 3-D rigid-motion-invariant texture distance is the integral average, with respect to the Haar measure of the group SO(3), of all of these divergences when rotations R 1 and R 2 vary throughout SO(3). We also present an algorithm enabling the computation of the proposed 3-D rigid-motion-invariant texture distance as well as rules for 3-D rigid-motion-invariant texture discrimination/classification and experimental results demonstrating the capabilities of the proposed 3-D rigid-motion texture discrimination rules when applied in a multiscale setting, even on very general 3-D texture models.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2185939</identifier><identifier>PMID: 22287241</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D texture classification ; Algorithms ; Applied sciences ; Artificial Intelligence ; Classification ; Computational modeling ; Covariance matrix ; Discrimination ; Exact sciences and technology ; Gaussian ; Gaussian Markov random fields (GMRF) ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Imaging, Three-Dimensional - methods ; Information, signal and communications theory ; isotropic multiresolution analysis (IMRA) ; Kullback-Leibler (KL) divergence ; Lattices ; Mathematical models ; Motion ; Multiresolution analysis ; Orbits ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; rigid-motion invariance ; Sensitivity and Specificity ; Signal processing ; Stochastic processes ; Studies ; Surface layer ; Telecommunications and information theory ; Texture ; Three dimensional ; Three dimensional models ; Vectors ; volumetric textures</subject><ispartof>IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2449-2463</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3</citedby><cites>FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6140571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25825820$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22287241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, S.</creatorcontrib><creatorcontrib>Papadakis, M.</creatorcontrib><creatorcontrib>Upadhyay, S.</creatorcontrib><creatorcontrib>Azencott, R.</creatorcontrib><title>Rigid-Motion-Invariant Classification of 3-D Textures</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper studies the problem of 3-D rigid-motion- invariant texture discrimination for discrete 3-D textures that are spatially homogeneous by modeling them as stationary Gaussian random fields. The latter property and our formulation of a 3-D rigid motion of a texture reduce the problem to the study of 3-D rotations of discrete textures. We formally develop the concept of 3-D texture rotations in the 3-D digital domain. We use this novel concept to define a "distance" between 3-D textures that remains invariant under all 3-D rigid motions of the texture. This concept of "distance" can be used for a monoscale or a mill tiscale 3-D rigid- motion-invariant testing of the statistical similarity of the 3-D textures. To compute the "distance" between any two rotations R 1 and R 2 of two given 3-D textures, we use the Kullback-Leibler divergence between 3-D Gaussian Markov random fields fitted to the rotated texture data. Then, the 3-D rigid-motion-invariant texture distance is the integral average, with respect to the Haar measure of the group SO(3), of all of these divergences when rotations R 1 and R 2 vary throughout SO(3). We also present an algorithm enabling the computation of the proposed 3-D rigid-motion-invariant texture distance as well as rules for 3-D rigid-motion-invariant texture discrimination/classification and experimental results demonstrating the capabilities of the proposed 3-D rigid-motion texture discrimination rules when applied in a multiscale setting, even on very general 3-D texture models.</description><subject>3-D texture classification</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Covariance matrix</subject><subject>Discrimination</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Gaussian Markov random fields (GMRF)</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information, signal and communications theory</subject><subject>isotropic multiresolution analysis (IMRA)</subject><subject>Kullback-Leibler (KL) divergence</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Motion</subject><subject>Multiresolution analysis</subject><subject>Orbits</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>rigid-motion invariance</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Vectors</subject><subject>volumetric textures</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLxDAQB_Agiu-7IMiCCF66Tl5NcpT1taAosp5L0p1KpNtq0op-e1N2VfDkKYH5zZD5h5ADCmNKwZzNpg9jBpSNGdXScLNGtqkRNAMQbD3dQapMUWG2yE6MLwBUSJpvki3GmFZM0G0iH_2zn2d3befbJps27zZ423SjSW1j9JUv7VAYtdWIZxejGX50fcC4RzYqW0fcX5275Onqcja5yW7vr6eT89usFJJ1maGVFgK0Qs6dds6VqLnlaIzOnZ47NBYAGeRcclFpZRVzSqFzZl6aXFq-S06Xc19D-9Zj7IqFjyXWtW2w7WNBgTEDea70PyhozaTWPNHjP_Sl7UOTFhkUE0YIbZKCpSpDG2PAqngNfmHDZ0LFkH6R0i-G9ItV-qnlaDW4dwuc_zR8x53AyQrYWNq6CrYpffx1cnghg-QOl84j4k85pyJ9KOVfQmKSQQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Jain, S.</creator><creator>Papadakis, M.</creator><creator>Upadhyay, S.</creator><creator>Azencott, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120501</creationdate><title>Rigid-Motion-Invariant Classification of 3-D Textures</title><author>Jain, S. ; Papadakis, M. ; Upadhyay, S. ; Azencott, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D texture classification</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Covariance matrix</topic><topic>Discrimination</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Gaussian Markov random fields (GMRF)</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information, signal and communications theory</topic><topic>isotropic multiresolution analysis (IMRA)</topic><topic>Kullback-Leibler (KL) divergence</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Motion</topic><topic>Multiresolution analysis</topic><topic>Orbits</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>rigid-motion invariance</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Vectors</topic><topic>volumetric textures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, S.</creatorcontrib><creatorcontrib>Papadakis, M.</creatorcontrib><creatorcontrib>Upadhyay, S.</creatorcontrib><creatorcontrib>Azencott, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, S.</au><au>Papadakis, M.</au><au>Upadhyay, S.</au><au>Azencott, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigid-Motion-Invariant Classification of 3-D Textures</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>21</volume><issue>5</issue><spage>2449</spage><epage>2463</epage><pages>2449-2463</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper studies the problem of 3-D rigid-motion- invariant texture discrimination for discrete 3-D textures that are spatially homogeneous by modeling them as stationary Gaussian random fields. The latter property and our formulation of a 3-D rigid motion of a texture reduce the problem to the study of 3-D rotations of discrete textures. We formally develop the concept of 3-D texture rotations in the 3-D digital domain. We use this novel concept to define a "distance" between 3-D textures that remains invariant under all 3-D rigid motions of the texture. This concept of "distance" can be used for a monoscale or a mill tiscale 3-D rigid- motion-invariant testing of the statistical similarity of the 3-D textures. To compute the "distance" between any two rotations R 1 and R 2 of two given 3-D textures, we use the Kullback-Leibler divergence between 3-D Gaussian Markov random fields fitted to the rotated texture data. Then, the 3-D rigid-motion-invariant texture distance is the integral average, with respect to the Haar measure of the group SO(3), of all of these divergences when rotations R 1 and R 2 vary throughout SO(3). We also present an algorithm enabling the computation of the proposed 3-D rigid-motion-invariant texture distance as well as rules for 3-D rigid-motion-invariant texture discrimination/classification and experimental results demonstrating the capabilities of the proposed 3-D rigid-motion texture discrimination rules when applied in a multiscale setting, even on very general 3-D texture models.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22287241</pmid><doi>10.1109/TIP.2012.2185939</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2449-2463
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1008825883
source IEEE Xplore (Online service)
subjects 3-D texture classification
Algorithms
Applied sciences
Artificial Intelligence
Classification
Computational modeling
Covariance matrix
Discrimination
Exact sciences and technology
Gaussian
Gaussian Markov random fields (GMRF)
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Imaging, Three-Dimensional - methods
Information, signal and communications theory
isotropic multiresolution analysis (IMRA)
Kullback-Leibler (KL) divergence
Lattices
Mathematical models
Motion
Multiresolution analysis
Orbits
Pattern Recognition, Automated - methods
Reproducibility of Results
rigid-motion invariance
Sensitivity and Specificity
Signal processing
Stochastic processes
Studies
Surface layer
Telecommunications and information theory
Texture
Three dimensional
Three dimensional models
Vectors
volumetric textures
title Rigid-Motion-Invariant Classification of 3-D Textures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigid-Motion-Invariant%20Classification%20of%203-D%20Textures&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jain,%20S.&rft.date=2012-05-01&rft.volume=21&rft.issue=5&rft.spage=2449&rft.epage=2463&rft.pages=2449-2463&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2185939&rft_dat=%3Cproquest_pasca%3E1022906678%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-91f844087e33b8bbbce83a3e9986b8dbe9a00e2063534f87a72b77ebb9dc965a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1002494489&rft_id=info:pmid/22287241&rft_ieee_id=6140571&rfr_iscdi=true