Loading…

A portable electronic nose system for the identification of cannabis-based drugs

We report on a research aimed at evaluating the capacity of a simple, low-cost, portable electronic nose system based on commercially available metal oxide gas sensors to classify different types of drugs. Five drugs, namely cannabis buds, cannabis plants, hashish, snuff tobacco and tobacco leaves w...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2011-07, Vol.155 (2), p.456-463
Main Authors: Haddi, Z., Amari, A., Alami, H., El Bari, N., Llobet, E., Bouchikhi, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33
cites cdi_FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33
container_end_page 463
container_issue 2
container_start_page 456
container_title Sensors and actuators. B, Chemical
container_volume 155
creator Haddi, Z.
Amari, A.
Alami, H.
El Bari, N.
Llobet, E.
Bouchikhi, B.
description We report on a research aimed at evaluating the capacity of a simple, low-cost, portable electronic nose system based on commercially available metal oxide gas sensors to classify different types of drugs. Five drugs, namely cannabis buds, cannabis plants, hashish, snuff tobacco and tobacco leaves were employed. A dedicated real-time data acquisition system based on dynamic headspace sampling, a microcontroller and a laptop computer have been designed and constructed for this application. To demonstrate its discrimination capability, unsupervised and supervised classification models have been built and validated. Principal Component Analysis (PCA) of volatile profiles revealed five distinct groups corresponding to the five different drugs analyzed. This was further confirmed by a multivariate analysis of variance (MANOVA) test. Support Vectors Machines (SVMs) were applied to build a classifier and reached a 98.5% success rate in the recognition of the different drugs analyzed. This work demonstrates for the first time that the electronic nose technology could be successfully applied to the identification of illegal drugs.
doi_str_mv 10.1016/j.snb.2010.12.047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008835194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400510009779</els_id><sourcerecordid>1008835194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhUVpoG6SH9BTdexlnZnVyivTUwhNWwik0OQsJO0olVlLrmZdyL-vjHvuaXjwvQfzCfEBYY2Am5vdmrNf93DK_RqG8Y1YoRlVp2Ac34oVbHvdDQD6nXjPvAOAQW1gJX7cykOpi_MzSZopLLXkFGQuTJJfeaG9jKXK5RfJNFFeUkzBLalkWaIMLmfnE3feMU1yqscXvhIX0c1M1__upXi-__J09617ePz6_e72oQtKD0sXHfpoMPajdyqMkzJRbQwSoY6OTPAUqVdOm1ErH_RWmQnReBUhYAheqUvx6bx7qOX3kXix-8SB5tllKke2CGCM0rgdGopnNNTCXCnaQ017V18bZE_27M42e_Zkz2Jvm73W-XjuRFese6mJ7fPPBmgAxNGAbsTnM0Htyz-JquWQKAeaUm0e7VTSf_b_AuczghY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008835194</pqid></control><display><type>article</type><title>A portable electronic nose system for the identification of cannabis-based drugs</title><source>ScienceDirect Journals</source><creator>Haddi, Z. ; Amari, A. ; Alami, H. ; El Bari, N. ; Llobet, E. ; Bouchikhi, B.</creator><creatorcontrib>Haddi, Z. ; Amari, A. ; Alami, H. ; El Bari, N. ; Llobet, E. ; Bouchikhi, B.</creatorcontrib><description>We report on a research aimed at evaluating the capacity of a simple, low-cost, portable electronic nose system based on commercially available metal oxide gas sensors to classify different types of drugs. Five drugs, namely cannabis buds, cannabis plants, hashish, snuff tobacco and tobacco leaves were employed. A dedicated real-time data acquisition system based on dynamic headspace sampling, a microcontroller and a laptop computer have been designed and constructed for this application. To demonstrate its discrimination capability, unsupervised and supervised classification models have been built and validated. Principal Component Analysis (PCA) of volatile profiles revealed five distinct groups corresponding to the five different drugs analyzed. This was further confirmed by a multivariate analysis of variance (MANOVA) test. Support Vectors Machines (SVMs) were applied to build a classifier and reached a 98.5% success rate in the recognition of the different drugs analyzed. This work demonstrates for the first time that the electronic nose technology could be successfully applied to the identification of illegal drugs.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2010.12.047</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Allelochemicals ; Cannabis ; Data analysis ; drugs ; Drugs detection ; electronic nose ; headspace analysis ; leaves ; multivariate analysis ; Pattern recognition techniques ; Portable electronic nose ; principal component analysis ; support vector machines ; tobacco ; volatile compounds</subject><ispartof>Sensors and actuators. B, Chemical, 2011-07, Vol.155 (2), p.456-463</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33</citedby><cites>FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haddi, Z.</creatorcontrib><creatorcontrib>Amari, A.</creatorcontrib><creatorcontrib>Alami, H.</creatorcontrib><creatorcontrib>El Bari, N.</creatorcontrib><creatorcontrib>Llobet, E.</creatorcontrib><creatorcontrib>Bouchikhi, B.</creatorcontrib><title>A portable electronic nose system for the identification of cannabis-based drugs</title><title>Sensors and actuators. B, Chemical</title><description>We report on a research aimed at evaluating the capacity of a simple, low-cost, portable electronic nose system based on commercially available metal oxide gas sensors to classify different types of drugs. Five drugs, namely cannabis buds, cannabis plants, hashish, snuff tobacco and tobacco leaves were employed. A dedicated real-time data acquisition system based on dynamic headspace sampling, a microcontroller and a laptop computer have been designed and constructed for this application. To demonstrate its discrimination capability, unsupervised and supervised classification models have been built and validated. Principal Component Analysis (PCA) of volatile profiles revealed five distinct groups corresponding to the five different drugs analyzed. This was further confirmed by a multivariate analysis of variance (MANOVA) test. Support Vectors Machines (SVMs) were applied to build a classifier and reached a 98.5% success rate in the recognition of the different drugs analyzed. This work demonstrates for the first time that the electronic nose technology could be successfully applied to the identification of illegal drugs.</description><subject>Allelochemicals</subject><subject>Cannabis</subject><subject>Data analysis</subject><subject>drugs</subject><subject>Drugs detection</subject><subject>electronic nose</subject><subject>headspace analysis</subject><subject>leaves</subject><subject>multivariate analysis</subject><subject>Pattern recognition techniques</subject><subject>Portable electronic nose</subject><subject>principal component analysis</subject><subject>support vector machines</subject><subject>tobacco</subject><subject>volatile compounds</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEQhUVpoG6SH9BTdexlnZnVyivTUwhNWwik0OQsJO0olVlLrmZdyL-vjHvuaXjwvQfzCfEBYY2Am5vdmrNf93DK_RqG8Y1YoRlVp2Ac34oVbHvdDQD6nXjPvAOAQW1gJX7cykOpi_MzSZopLLXkFGQuTJJfeaG9jKXK5RfJNFFeUkzBLalkWaIMLmfnE3feMU1yqscXvhIX0c1M1__upXi-__J09617ePz6_e72oQtKD0sXHfpoMPajdyqMkzJRbQwSoY6OTPAUqVdOm1ErH_RWmQnReBUhYAheqUvx6bx7qOX3kXix-8SB5tllKke2CGCM0rgdGopnNNTCXCnaQ017V18bZE_27M42e_Zkz2Jvm73W-XjuRFese6mJ7fPPBmgAxNGAbsTnM0Htyz-JquWQKAeaUm0e7VTSf_b_AuczghY</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Haddi, Z.</creator><creator>Amari, A.</creator><creator>Alami, H.</creator><creator>El Bari, N.</creator><creator>Llobet, E.</creator><creator>Bouchikhi, B.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110720</creationdate><title>A portable electronic nose system for the identification of cannabis-based drugs</title><author>Haddi, Z. ; Amari, A. ; Alami, H. ; El Bari, N. ; Llobet, E. ; Bouchikhi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Allelochemicals</topic><topic>Cannabis</topic><topic>Data analysis</topic><topic>drugs</topic><topic>Drugs detection</topic><topic>electronic nose</topic><topic>headspace analysis</topic><topic>leaves</topic><topic>multivariate analysis</topic><topic>Pattern recognition techniques</topic><topic>Portable electronic nose</topic><topic>principal component analysis</topic><topic>support vector machines</topic><topic>tobacco</topic><topic>volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddi, Z.</creatorcontrib><creatorcontrib>Amari, A.</creatorcontrib><creatorcontrib>Alami, H.</creatorcontrib><creatorcontrib>El Bari, N.</creatorcontrib><creatorcontrib>Llobet, E.</creatorcontrib><creatorcontrib>Bouchikhi, B.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddi, Z.</au><au>Amari, A.</au><au>Alami, H.</au><au>El Bari, N.</au><au>Llobet, E.</au><au>Bouchikhi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A portable electronic nose system for the identification of cannabis-based drugs</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2011-07-20</date><risdate>2011</risdate><volume>155</volume><issue>2</issue><spage>456</spage><epage>463</epage><pages>456-463</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>We report on a research aimed at evaluating the capacity of a simple, low-cost, portable electronic nose system based on commercially available metal oxide gas sensors to classify different types of drugs. Five drugs, namely cannabis buds, cannabis plants, hashish, snuff tobacco and tobacco leaves were employed. A dedicated real-time data acquisition system based on dynamic headspace sampling, a microcontroller and a laptop computer have been designed and constructed for this application. To demonstrate its discrimination capability, unsupervised and supervised classification models have been built and validated. Principal Component Analysis (PCA) of volatile profiles revealed five distinct groups corresponding to the five different drugs analyzed. This was further confirmed by a multivariate analysis of variance (MANOVA) test. Support Vectors Machines (SVMs) were applied to build a classifier and reached a 98.5% success rate in the recognition of the different drugs analyzed. This work demonstrates for the first time that the electronic nose technology could be successfully applied to the identification of illegal drugs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2010.12.047</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2011-07, Vol.155 (2), p.456-463
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1008835194
source ScienceDirect Journals
subjects Allelochemicals
Cannabis
Data analysis
drugs
Drugs detection
electronic nose
headspace analysis
leaves
multivariate analysis
Pattern recognition techniques
Portable electronic nose
principal component analysis
support vector machines
tobacco
volatile compounds
title A portable electronic nose system for the identification of cannabis-based drugs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20portable%20electronic%20nose%20system%20for%20the%20identification%20of%20cannabis-based%20drugs&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Haddi,%20Z.&rft.date=2011-07-20&rft.volume=155&rft.issue=2&rft.spage=456&rft.epage=463&rft.pages=456-463&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2010.12.047&rft_dat=%3Cproquest_cross%3E1008835194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-fa1bf81f27ba3c7d38f3681ee15fae8cbefe23a58753bc5938d118b3f0c1ccb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1008835194&rft_id=info:pmid/&rfr_iscdi=true