Loading…

Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations

Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M T(r)) and/or gas mass (M g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By nu...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2012-04, Vol.421 (2), p.1136-1154
Main Authors: Olamaie, Malak, Rodríguez-Gonzálvez, Carmen, Davies, Matthew L., Feroz, Farhan, Franzen, Thomas M. O., Grainge, Keith J. B., Hobson, Michael P., Hurley-Walker, Natasha, Lasenby, Anthony N., Pooley, Guy G., Saunders, Richard D. E., Scaife, Anna M. M., Schammel, Michel, Scott, Paul F., Shimwell, Timothy W., Titterington, David J., Waldram, Elizabeth M., Zwart, Jonathan T. L.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3
cites
container_end_page 1154
container_issue 2
container_start_page 1136
container_title Monthly notices of the Royal Astronomical Society
container_volume 421
creator Olamaie, Malak
Rodríguez-Gonzálvez, Carmen
Davies, Matthew L.
Feroz, Farhan
Franzen, Thomas M. O.
Grainge, Keith J. B.
Hobson, Michael P.
Hurley-Walker, Natasha
Lasenby, Anthony N.
Pooley, Guy G.
Saunders, Richard D. E.
Scaife, Anna M. M.
Schammel, Michel
Scott, Paul F.
Shimwell, Timothy W.
Titterington, David J.
Waldram, Elizabeth M.
Zwart, Jonathan T. L.
description Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M T(r)) and/or gas mass (M g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n e(r) described by two shape parameters β and r c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M T(r 200) and T g(r 200) (M T(r 200) = (6.43 ± 5.43) × 1015 M⊙ and T g(r 200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M T(r 200) = 5.83 × 1014 M⊙ and T g(r 200) = 5 keV). We then investigate parametrizations II and III in which f g(r 200) replaces temperature as a main variable; we do this because f g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M T(r 200) and T g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M T(r 200) = (6.8 ± 2.1) × 1014 M⊙ and T g(r 200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M T(r 200) = (4.68 ± 1.56) × 1014 M⊙ and T g(r 200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decl
doi_str_mv 10.1111/j.1365-2966.2011.20374.x
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008835688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2011.20374.x</oup_id><sourcerecordid>2611811701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMoOKf_IXijN61Jk6btjTCGH4Ntih833oQ0fcMyunY27Vz99babeKGYi5MXcs7hzYMQpsSn3bla-pSJ0AsSIfyAUNoJi7i_PUCDn4dDNCCEhV4cUXqMTpxbEkI4C8QAzR9VpVZQV_ZT1bYsMBgDunbYFrheAFaFyltnHS4NHs0m-LkpWgUb7w3yi6zcWL3AZeqg2uzS7hQdGZU7OPu-h-j19uZlfO9NH-4m49HU00wk3AuTiIKCMA4zIN1SxKQ8ZWnITaYyTWMacRIbnSilY8EET4WhKQFuGGNaM2BDdLnvXVflewOulivrNOS5KqBsnKSExDELRSdDdP7LuiybqvuWk0kQR1wkUdSZrvemD5tDK9eVXamq7WpkD1kuZc9S9ixlD1nuIMutnM2fdmNXwPYFZbP-J-79ibMvkZeBfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928746977</pqid></control><display><type>article</type><title>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Olamaie, Malak ; Rodríguez-Gonzálvez, Carmen ; Davies, Matthew L. ; Feroz, Farhan ; Franzen, Thomas M. O. ; Grainge, Keith J. B. ; Hobson, Michael P. ; Hurley-Walker, Natasha ; Lasenby, Anthony N. ; Pooley, Guy G. ; Saunders, Richard D. E. ; Scaife, Anna M. M. ; Schammel, Michel ; Scott, Paul F. ; Shimwell, Timothy W. ; Titterington, David J. ; Waldram, Elizabeth M. ; Zwart, Jonathan T. L.</creator><creatorcontrib>Olamaie, Malak ; Rodríguez-Gonzálvez, Carmen ; Davies, Matthew L. ; Feroz, Farhan ; Franzen, Thomas M. O. ; Grainge, Keith J. B. ; Hobson, Michael P. ; Hurley-Walker, Natasha ; Lasenby, Anthony N. ; Pooley, Guy G. ; Saunders, Richard D. E. ; Scaife, Anna M. M. ; Schammel, Michel ; Scott, Paul F. ; Shimwell, Timothy W. ; Titterington, David J. ; Waldram, Elizabeth M. ; Zwart, Jonathan T. L.</creatorcontrib><description>Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M T(r)) and/or gas mass (M g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n e(r) described by two shape parameters β and r c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M T(r 200) and T g(r 200) (M T(r 200) = (6.43 ± 5.43) × 1015 M⊙ and T g(r 200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M T(r 200) = 5.83 × 1014 M⊙ and T g(r 200) = 5 keV). We then investigate parametrizations II and III in which f g(r 200) replaces temperature as a main variable; we do this because f g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M T(r 200) and T g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M T(r 200) = (6.8 ± 2.1) × 1014 M⊙ and T g(r 200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M T(r 200) = (4.68 ± 1.56) × 1014 M⊙ and T g(r 200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1σ from the simulated cluster true values: M T(r 200) = (5.9 ± 3.4) × 1014 M⊙ and T g(r 200) = (7.4 ± 2.6) keV using parametrization II, and M T(r 200) = (8.0 ± 5.6) × 1014 M⊙ and T g(r 200) = (5.98 ± 2.43) keV using parametrization III. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the Arcminute Microkelvin Imager (AMI) visibilities between the two models. This may of course change as the instruments improve.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2011.20374.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; cosmic background radiation ; Cosmology ; cosmology: observations ; galaxies: clusters: general ; methods: data analysis ; Simulation ; Stars &amp; galaxies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2012-04, Vol.421 (2), p.1136-1154</ispartof><rights>2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012</rights><rights>2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Olamaie, Malak</creatorcontrib><creatorcontrib>Rodríguez-Gonzálvez, Carmen</creatorcontrib><creatorcontrib>Davies, Matthew L.</creatorcontrib><creatorcontrib>Feroz, Farhan</creatorcontrib><creatorcontrib>Franzen, Thomas M. O.</creatorcontrib><creatorcontrib>Grainge, Keith J. B.</creatorcontrib><creatorcontrib>Hobson, Michael P.</creatorcontrib><creatorcontrib>Hurley-Walker, Natasha</creatorcontrib><creatorcontrib>Lasenby, Anthony N.</creatorcontrib><creatorcontrib>Pooley, Guy G.</creatorcontrib><creatorcontrib>Saunders, Richard D. E.</creatorcontrib><creatorcontrib>Scaife, Anna M. M.</creatorcontrib><creatorcontrib>Schammel, Michel</creatorcontrib><creatorcontrib>Scott, Paul F.</creatorcontrib><creatorcontrib>Shimwell, Timothy W.</creatorcontrib><creatorcontrib>Titterington, David J.</creatorcontrib><creatorcontrib>Waldram, Elizabeth M.</creatorcontrib><creatorcontrib>Zwart, Jonathan T. L.</creatorcontrib><title>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M T(r)) and/or gas mass (M g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n e(r) described by two shape parameters β and r c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M T(r 200) and T g(r 200) (M T(r 200) = (6.43 ± 5.43) × 1015 M⊙ and T g(r 200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M T(r 200) = 5.83 × 1014 M⊙ and T g(r 200) = 5 keV). We then investigate parametrizations II and III in which f g(r 200) replaces temperature as a main variable; we do this because f g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M T(r 200) and T g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M T(r 200) = (6.8 ± 2.1) × 1014 M⊙ and T g(r 200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M T(r 200) = (4.68 ± 1.56) × 1014 M⊙ and T g(r 200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1σ from the simulated cluster true values: M T(r 200) = (5.9 ± 3.4) × 1014 M⊙ and T g(r 200) = (7.4 ± 2.6) keV using parametrization II, and M T(r 200) = (8.0 ± 5.6) × 1014 M⊙ and T g(r 200) = (5.98 ± 2.43) keV using parametrization III. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the Arcminute Microkelvin Imager (AMI) visibilities between the two models. This may of course change as the instruments improve.</description><subject>Astrophysics</subject><subject>cosmic background radiation</subject><subject>Cosmology</subject><subject>cosmology: observations</subject><subject>galaxies: clusters: general</subject><subject>methods: data analysis</subject><subject>Simulation</subject><subject>Stars &amp; galaxies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAYhYMoOKf_IXijN61Jk6btjTCGH4Ntih833oQ0fcMyunY27Vz99babeKGYi5MXcs7hzYMQpsSn3bla-pSJ0AsSIfyAUNoJi7i_PUCDn4dDNCCEhV4cUXqMTpxbEkI4C8QAzR9VpVZQV_ZT1bYsMBgDunbYFrheAFaFyltnHS4NHs0m-LkpWgUb7w3yi6zcWL3AZeqg2uzS7hQdGZU7OPu-h-j19uZlfO9NH-4m49HU00wk3AuTiIKCMA4zIN1SxKQ8ZWnITaYyTWMacRIbnSilY8EET4WhKQFuGGNaM2BDdLnvXVflewOulivrNOS5KqBsnKSExDELRSdDdP7LuiybqvuWk0kQR1wkUdSZrvemD5tDK9eVXamq7WpkD1kuZc9S9ixlD1nuIMutnM2fdmNXwPYFZbP-J-79ibMvkZeBfA</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Olamaie, Malak</creator><creator>Rodríguez-Gonzálvez, Carmen</creator><creator>Davies, Matthew L.</creator><creator>Feroz, Farhan</creator><creator>Franzen, Thomas M. O.</creator><creator>Grainge, Keith J. B.</creator><creator>Hobson, Michael P.</creator><creator>Hurley-Walker, Natasha</creator><creator>Lasenby, Anthony N.</creator><creator>Pooley, Guy G.</creator><creator>Saunders, Richard D. E.</creator><creator>Scaife, Anna M. M.</creator><creator>Schammel, Michel</creator><creator>Scott, Paul F.</creator><creator>Shimwell, Timothy W.</creator><creator>Titterington, David J.</creator><creator>Waldram, Elizabeth M.</creator><creator>Zwart, Jonathan T. L.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201204</creationdate><title>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</title><author>Olamaie, Malak ; Rodríguez-Gonzálvez, Carmen ; Davies, Matthew L. ; Feroz, Farhan ; Franzen, Thomas M. O. ; Grainge, Keith J. B. ; Hobson, Michael P. ; Hurley-Walker, Natasha ; Lasenby, Anthony N. ; Pooley, Guy G. ; Saunders, Richard D. E. ; Scaife, Anna M. M. ; Schammel, Michel ; Scott, Paul F. ; Shimwell, Timothy W. ; Titterington, David J. ; Waldram, Elizabeth M. ; Zwart, Jonathan T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astrophysics</topic><topic>cosmic background radiation</topic><topic>Cosmology</topic><topic>cosmology: observations</topic><topic>galaxies: clusters: general</topic><topic>methods: data analysis</topic><topic>Simulation</topic><topic>Stars &amp; galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olamaie, Malak</creatorcontrib><creatorcontrib>Rodríguez-Gonzálvez, Carmen</creatorcontrib><creatorcontrib>Davies, Matthew L.</creatorcontrib><creatorcontrib>Feroz, Farhan</creatorcontrib><creatorcontrib>Franzen, Thomas M. O.</creatorcontrib><creatorcontrib>Grainge, Keith J. B.</creatorcontrib><creatorcontrib>Hobson, Michael P.</creatorcontrib><creatorcontrib>Hurley-Walker, Natasha</creatorcontrib><creatorcontrib>Lasenby, Anthony N.</creatorcontrib><creatorcontrib>Pooley, Guy G.</creatorcontrib><creatorcontrib>Saunders, Richard D. E.</creatorcontrib><creatorcontrib>Scaife, Anna M. M.</creatorcontrib><creatorcontrib>Schammel, Michel</creatorcontrib><creatorcontrib>Scott, Paul F.</creatorcontrib><creatorcontrib>Shimwell, Timothy W.</creatorcontrib><creatorcontrib>Titterington, David J.</creatorcontrib><creatorcontrib>Waldram, Elizabeth M.</creatorcontrib><creatorcontrib>Zwart, Jonathan T. L.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olamaie, Malak</au><au>Rodríguez-Gonzálvez, Carmen</au><au>Davies, Matthew L.</au><au>Feroz, Farhan</au><au>Franzen, Thomas M. O.</au><au>Grainge, Keith J. B.</au><au>Hobson, Michael P.</au><au>Hurley-Walker, Natasha</au><au>Lasenby, Anthony N.</au><au>Pooley, Guy G.</au><au>Saunders, Richard D. E.</au><au>Scaife, Anna M. M.</au><au>Schammel, Michel</au><au>Scott, Paul F.</au><au>Shimwell, Timothy W.</au><au>Titterington, David J.</au><au>Waldram, Elizabeth M.</au><au>Zwart, Jonathan T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2012-04</date><risdate>2012</risdate><volume>421</volume><issue>2</issue><spage>1136</spage><epage>1154</epage><pages>1136-1154</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M T(r)) and/or gas mass (M g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n e(r) described by two shape parameters β and r c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M T(r 200) and T g(r 200) (M T(r 200) = (6.43 ± 5.43) × 1015 M⊙ and T g(r 200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M T(r 200) = 5.83 × 1014 M⊙ and T g(r 200) = 5 keV). We then investigate parametrizations II and III in which f g(r 200) replaces temperature as a main variable; we do this because f g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M T(r 200) and T g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M T(r 200) = (6.8 ± 2.1) × 1014 M⊙ and T g(r 200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M T(r 200) = (4.68 ± 1.56) × 1014 M⊙ and T g(r 200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1σ from the simulated cluster true values: M T(r 200) = (5.9 ± 3.4) × 1014 M⊙ and T g(r 200) = (7.4 ± 2.6) keV using parametrization II, and M T(r 200) = (8.0 ± 5.6) × 1014 M⊙ and T g(r 200) = (5.98 ± 2.43) keV using parametrization III. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the Arcminute Microkelvin Imager (AMI) visibilities between the two models. This may of course change as the instruments improve.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2011.20374.x</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2012-04, Vol.421 (2), p.1136-1154
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1008835688
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
cosmic background radiation
Cosmology
cosmology: observations
galaxies: clusters: general
methods: data analysis
Simulation
Stars & galaxies
title Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T18%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrization%20effects%20in%20the%20analysis%20of%20AMI%20Sunyaev-Zel'dovich%20observations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Olamaie,%20Malak&rft.date=2012-04&rft.volume=421&rft.issue=2&rft.spage=1136&rft.epage=1154&rft.pages=1136-1154&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1111/j.1365-2966.2011.20374.x&rft_dat=%3Cproquest_wiley%3E2611811701%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=928746977&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2011.20374.x&rfr_iscdi=true