Loading…
Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations
Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M T(r)) and/or gas mass (M g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By nu...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2012-04, Vol.421 (2), p.1136-1154 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3 |
---|---|
cites | |
container_end_page | 1154 |
container_issue | 2 |
container_start_page | 1136 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 421 |
creator | Olamaie, Malak Rodríguez-Gonzálvez, Carmen Davies, Matthew L. Feroz, Farhan Franzen, Thomas M. O. Grainge, Keith J. B. Hobson, Michael P. Hurley-Walker, Natasha Lasenby, Anthony N. Pooley, Guy G. Saunders, Richard D. E. Scaife, Anna M. M. Schammel, Michel Scott, Paul F. Shimwell, Timothy W. Titterington, David J. Waldram, Elizabeth M. Zwart, Jonathan T. L. |
description | Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M
T(r)) and/or gas mass (M
g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n
e(r) described by two shape parameters β and r
c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M
T(r
200) and T
g(r
200) (M
T(r
200) = (6.43 ± 5.43) × 1015 M⊙ and T
g(r
200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M
T(r
200) = 5.83 × 1014 M⊙ and T
g(r
200) = 5 keV). We then investigate parametrizations II and III in which f
g(r
200) replaces temperature as a main variable; we do this because f
g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M
T(r
200) and T
g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M
T(r
200) = (6.8 ± 2.1) × 1014 M⊙ and T
g(r
200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M
T(r
200) = (4.68 ± 1.56) × 1014 M⊙ and T
g(r
200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decl |
doi_str_mv | 10.1111/j.1365-2966.2011.20374.x |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008835688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2011.20374.x</oup_id><sourcerecordid>2611811701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMoOKf_IXijN61Jk6btjTCGH4Ntih833oQ0fcMyunY27Vz99babeKGYi5MXcs7hzYMQpsSn3bla-pSJ0AsSIfyAUNoJi7i_PUCDn4dDNCCEhV4cUXqMTpxbEkI4C8QAzR9VpVZQV_ZT1bYsMBgDunbYFrheAFaFyltnHS4NHs0m-LkpWgUb7w3yi6zcWL3AZeqg2uzS7hQdGZU7OPu-h-j19uZlfO9NH-4m49HU00wk3AuTiIKCMA4zIN1SxKQ8ZWnITaYyTWMacRIbnSilY8EET4WhKQFuGGNaM2BDdLnvXVflewOulivrNOS5KqBsnKSExDELRSdDdP7LuiybqvuWk0kQR1wkUdSZrvemD5tDK9eVXamq7WpkD1kuZc9S9ixlD1nuIMutnM2fdmNXwPYFZbP-J-79ibMvkZeBfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928746977</pqid></control><display><type>article</type><title>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Olamaie, Malak ; Rodríguez-Gonzálvez, Carmen ; Davies, Matthew L. ; Feroz, Farhan ; Franzen, Thomas M. O. ; Grainge, Keith J. B. ; Hobson, Michael P. ; Hurley-Walker, Natasha ; Lasenby, Anthony N. ; Pooley, Guy G. ; Saunders, Richard D. E. ; Scaife, Anna M. M. ; Schammel, Michel ; Scott, Paul F. ; Shimwell, Timothy W. ; Titterington, David J. ; Waldram, Elizabeth M. ; Zwart, Jonathan T. L.</creator><creatorcontrib>Olamaie, Malak ; Rodríguez-Gonzálvez, Carmen ; Davies, Matthew L. ; Feroz, Farhan ; Franzen, Thomas M. O. ; Grainge, Keith J. B. ; Hobson, Michael P. ; Hurley-Walker, Natasha ; Lasenby, Anthony N. ; Pooley, Guy G. ; Saunders, Richard D. E. ; Scaife, Anna M. M. ; Schammel, Michel ; Scott, Paul F. ; Shimwell, Timothy W. ; Titterington, David J. ; Waldram, Elizabeth M. ; Zwart, Jonathan T. L.</creatorcontrib><description>Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M
T(r)) and/or gas mass (M
g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n
e(r) described by two shape parameters β and r
c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M
T(r
200) and T
g(r
200) (M
T(r
200) = (6.43 ± 5.43) × 1015 M⊙ and T
g(r
200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M
T(r
200) = 5.83 × 1014 M⊙ and T
g(r
200) = 5 keV). We then investigate parametrizations II and III in which f
g(r
200) replaces temperature as a main variable; we do this because f
g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M
T(r
200) and T
g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M
T(r
200) = (6.8 ± 2.1) × 1014 M⊙ and T
g(r
200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M
T(r
200) = (4.68 ± 1.56) × 1014 M⊙ and T
g(r
200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1σ from the simulated cluster true values: M
T(r
200) = (5.9 ± 3.4) × 1014 M⊙ and T
g(r
200) = (7.4 ± 2.6) keV using parametrization II, and M
T(r
200) = (8.0 ± 5.6) × 1014 M⊙ and T
g(r
200) = (5.98 ± 2.43) keV using parametrization III. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the Arcminute Microkelvin Imager (AMI) visibilities between the two models. This may of course change as the instruments improve.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2011.20374.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; cosmic background radiation ; Cosmology ; cosmology: observations ; galaxies: clusters: general ; methods: data analysis ; Simulation ; Stars & galaxies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2012-04, Vol.421 (2), p.1136-1154</ispartof><rights>2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS 2012</rights><rights>2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Olamaie, Malak</creatorcontrib><creatorcontrib>Rodríguez-Gonzálvez, Carmen</creatorcontrib><creatorcontrib>Davies, Matthew L.</creatorcontrib><creatorcontrib>Feroz, Farhan</creatorcontrib><creatorcontrib>Franzen, Thomas M. O.</creatorcontrib><creatorcontrib>Grainge, Keith J. B.</creatorcontrib><creatorcontrib>Hobson, Michael P.</creatorcontrib><creatorcontrib>Hurley-Walker, Natasha</creatorcontrib><creatorcontrib>Lasenby, Anthony N.</creatorcontrib><creatorcontrib>Pooley, Guy G.</creatorcontrib><creatorcontrib>Saunders, Richard D. E.</creatorcontrib><creatorcontrib>Scaife, Anna M. M.</creatorcontrib><creatorcontrib>Schammel, Michel</creatorcontrib><creatorcontrib>Scott, Paul F.</creatorcontrib><creatorcontrib>Shimwell, Timothy W.</creatorcontrib><creatorcontrib>Titterington, David J.</creatorcontrib><creatorcontrib>Waldram, Elizabeth M.</creatorcontrib><creatorcontrib>Zwart, Jonathan T. L.</creatorcontrib><title>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M
T(r)) and/or gas mass (M
g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n
e(r) described by two shape parameters β and r
c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M
T(r
200) and T
g(r
200) (M
T(r
200) = (6.43 ± 5.43) × 1015 M⊙ and T
g(r
200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M
T(r
200) = 5.83 × 1014 M⊙ and T
g(r
200) = 5 keV). We then investigate parametrizations II and III in which f
g(r
200) replaces temperature as a main variable; we do this because f
g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M
T(r
200) and T
g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M
T(r
200) = (6.8 ± 2.1) × 1014 M⊙ and T
g(r
200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M
T(r
200) = (4.68 ± 1.56) × 1014 M⊙ and T
g(r
200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1σ from the simulated cluster true values: M
T(r
200) = (5.9 ± 3.4) × 1014 M⊙ and T
g(r
200) = (7.4 ± 2.6) keV using parametrization II, and M
T(r
200) = (8.0 ± 5.6) × 1014 M⊙ and T
g(r
200) = (5.98 ± 2.43) keV using parametrization III. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the Arcminute Microkelvin Imager (AMI) visibilities between the two models. This may of course change as the instruments improve.</description><subject>Astrophysics</subject><subject>cosmic background radiation</subject><subject>Cosmology</subject><subject>cosmology: observations</subject><subject>galaxies: clusters: general</subject><subject>methods: data analysis</subject><subject>Simulation</subject><subject>Stars & galaxies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAYhYMoOKf_IXijN61Jk6btjTCGH4Ntih833oQ0fcMyunY27Vz99babeKGYi5MXcs7hzYMQpsSn3bla-pSJ0AsSIfyAUNoJi7i_PUCDn4dDNCCEhV4cUXqMTpxbEkI4C8QAzR9VpVZQV_ZT1bYsMBgDunbYFrheAFaFyltnHS4NHs0m-LkpWgUb7w3yi6zcWL3AZeqg2uzS7hQdGZU7OPu-h-j19uZlfO9NH-4m49HU00wk3AuTiIKCMA4zIN1SxKQ8ZWnITaYyTWMacRIbnSilY8EET4WhKQFuGGNaM2BDdLnvXVflewOulivrNOS5KqBsnKSExDELRSdDdP7LuiybqvuWk0kQR1wkUdSZrvemD5tDK9eVXamq7WpkD1kuZc9S9ixlD1nuIMutnM2fdmNXwPYFZbP-J-79ibMvkZeBfA</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Olamaie, Malak</creator><creator>Rodríguez-Gonzálvez, Carmen</creator><creator>Davies, Matthew L.</creator><creator>Feroz, Farhan</creator><creator>Franzen, Thomas M. O.</creator><creator>Grainge, Keith J. B.</creator><creator>Hobson, Michael P.</creator><creator>Hurley-Walker, Natasha</creator><creator>Lasenby, Anthony N.</creator><creator>Pooley, Guy G.</creator><creator>Saunders, Richard D. E.</creator><creator>Scaife, Anna M. M.</creator><creator>Schammel, Michel</creator><creator>Scott, Paul F.</creator><creator>Shimwell, Timothy W.</creator><creator>Titterington, David J.</creator><creator>Waldram, Elizabeth M.</creator><creator>Zwart, Jonathan T. L.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201204</creationdate><title>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</title><author>Olamaie, Malak ; Rodríguez-Gonzálvez, Carmen ; Davies, Matthew L. ; Feroz, Farhan ; Franzen, Thomas M. O. ; Grainge, Keith J. B. ; Hobson, Michael P. ; Hurley-Walker, Natasha ; Lasenby, Anthony N. ; Pooley, Guy G. ; Saunders, Richard D. E. ; Scaife, Anna M. M. ; Schammel, Michel ; Scott, Paul F. ; Shimwell, Timothy W. ; Titterington, David J. ; Waldram, Elizabeth M. ; Zwart, Jonathan T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astrophysics</topic><topic>cosmic background radiation</topic><topic>Cosmology</topic><topic>cosmology: observations</topic><topic>galaxies: clusters: general</topic><topic>methods: data analysis</topic><topic>Simulation</topic><topic>Stars & galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olamaie, Malak</creatorcontrib><creatorcontrib>Rodríguez-Gonzálvez, Carmen</creatorcontrib><creatorcontrib>Davies, Matthew L.</creatorcontrib><creatorcontrib>Feroz, Farhan</creatorcontrib><creatorcontrib>Franzen, Thomas M. O.</creatorcontrib><creatorcontrib>Grainge, Keith J. B.</creatorcontrib><creatorcontrib>Hobson, Michael P.</creatorcontrib><creatorcontrib>Hurley-Walker, Natasha</creatorcontrib><creatorcontrib>Lasenby, Anthony N.</creatorcontrib><creatorcontrib>Pooley, Guy G.</creatorcontrib><creatorcontrib>Saunders, Richard D. E.</creatorcontrib><creatorcontrib>Scaife, Anna M. M.</creatorcontrib><creatorcontrib>Schammel, Michel</creatorcontrib><creatorcontrib>Scott, Paul F.</creatorcontrib><creatorcontrib>Shimwell, Timothy W.</creatorcontrib><creatorcontrib>Titterington, David J.</creatorcontrib><creatorcontrib>Waldram, Elizabeth M.</creatorcontrib><creatorcontrib>Zwart, Jonathan T. L.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olamaie, Malak</au><au>Rodríguez-Gonzálvez, Carmen</au><au>Davies, Matthew L.</au><au>Feroz, Farhan</au><au>Franzen, Thomas M. O.</au><au>Grainge, Keith J. B.</au><au>Hobson, Michael P.</au><au>Hurley-Walker, Natasha</au><au>Lasenby, Anthony N.</au><au>Pooley, Guy G.</au><au>Saunders, Richard D. E.</au><au>Scaife, Anna M. M.</au><au>Schammel, Michel</au><au>Scott, Paul F.</au><au>Shimwell, Timothy W.</au><au>Titterington, David J.</au><au>Waldram, Elizabeth M.</au><au>Zwart, Jonathan T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2012-04</date><risdate>2012</risdate><volume>421</volume><issue>2</issue><spage>1136</spage><epage>1154</epage><pages>1136-1154</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Most Sunyaev-Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass (M
T(r)) and/or gas mass (M
g(r)) using parametrized models derived from both simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a β-model for the electron number density n
e(r) described by two shape parameters β and r
c, we investigate the capability of this model and analysis to return the simulated cluster input quantities via three parametrizations. In parametrization I we assume that the gas temperature is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster parameters and fails to recover the true values of the simulated cluster. In particular it overestimates M
T(r
200) and T
g(r
200) (M
T(r
200) = (6.43 ± 5.43) × 1015 M⊙ and T
g(r
200) = (10.61 ± 5.28) keV) compared to the corresponding values of the simulated cluster (M
T(r
200) = 5.83 × 1014 M⊙ and T
g(r
200) = 5 keV). We then investigate parametrizations II and III in which f
g(r
200) replaces temperature as a main variable; we do this because f
g may vary significantly less from cluster to cluster than temperature. In parametrization II we relate M
T(r
200) and T
g assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster physical parameters but the temperature estimate is biased low (M
T(r
200) = (6.8 ± 2.1) × 1014 M⊙ and T
g(r
200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces the hydrostatic equilibrium assumption because we consider it more robust both in theory and in practice. We find that parametrization III results in unbiased estimates of the cluster properties (M
T(r
200) = (4.68 ± 1.56) × 1014 M⊙ and T
g(r
200) = (4.3 ± 0.9) keV). We generate a second simulated cluster using a generalized Navarro-Frenk-White pressure profile and analyse it with an entropy-based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1σ from the simulated cluster true values: M
T(r
200) = (5.9 ± 3.4) × 1014 M⊙ and T
g(r
200) = (7.4 ± 2.6) keV using parametrization II, and M
T(r
200) = (8.0 ± 5.6) × 1014 M⊙ and T
g(r
200) = (5.98 ± 2.43) keV using parametrization III. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the Arcminute Microkelvin Imager (AMI) visibilities between the two models. This may of course change as the instruments improve.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2011.20374.x</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2012-04, Vol.421 (2), p.1136-1154 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1008835688 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals |
subjects | Astrophysics cosmic background radiation Cosmology cosmology: observations galaxies: clusters: general methods: data analysis Simulation Stars & galaxies |
title | Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T18%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrization%20effects%20in%20the%20analysis%20of%20AMI%20Sunyaev-Zel'dovich%20observations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Olamaie,%20Malak&rft.date=2012-04&rft.volume=421&rft.issue=2&rft.spage=1136&rft.epage=1154&rft.pages=1136-1154&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1111/j.1365-2966.2011.20374.x&rft_dat=%3Cproquest_wiley%3E2611811701%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3694-5971eae585de07110fb4b3b54fdadc1817408fc9aac86364b6f1b0e4f333cc3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=928746977&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2011.20374.x&rfr_iscdi=true |