Loading…
Analysis of Micro-texture during Secondary Recrystallization in a Hi-B Electrical Steel
The understanding of Goss texture in Hi-B electrical steels possesses significant industrial and academic value, thus attracts worldwide attention. The prevailing models for sharp Goss texture formation during secondary recrystallization are CSL (coincident site lattice) boundary theory and HE (high...
Saved in:
Published in: | Journal of materials science & technology 2011-11, Vol.27 (11), p.1065-1071 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The understanding of Goss texture in Hi-B electrical steels possesses significant industrial and academic value, thus attracts worldwide attention. The prevailing models for sharp Goss texture formation during secondary recrystallization are CSL (coincident site lattice) boundary theory and HE (high energy) boundary theory. These theories stress the key factor of preferred growth and the difference between them only lies in the specific selection manner. This work examined the texture gradient in primarily recrystallized sheet and demonstrated its possible influence on the formation of secondary grains, and then determined the micro- texture during different stages of secondary recrystallization using EI3SD (electron back-scattered diffraction) technique, finally analyzed a special type of secondary grains with near Brass orientation, which were detected in the later stage of secondary recrystallization, and discussed its origin and effect in terms of surface energy effect. The results indicate that texture gradient in primarily recrystallized sheet will lead to a multi-stage formation of Goss texture, namely, early stage of secondary grains with various orientations in subsurface region, intermediate stage of preferred growth of Goss grains into center layer and re-grow back to the surface and the final stage of Goss grain growth by swallowing slowly the island grains with the help of H2 atmosphere. |
---|---|
ISSN: | 1005-0302 1941-1162 |
DOI: | 10.1016/S1005-0302(11)60187-4 |