Loading…

Cep70 contributes to angiogenesis by modulating microtubule rearrangement and stimulating cell polarization and migration

Centrosomal proteins intricately regulate diverse microtubule-mediated cellular activities, including cell polarization and migration. However, the direct participation of these proteins in angiogenesis, which involves vascular endothelial cell migration from preexisting blood vessels, remains elusi...

Full description

Saved in:
Bibliographic Details
Published in:Cell cycle (Georgetown, Tex.) Tex.), 2012-04, Vol.11 (8), p.1554-1563
Main Authors: Shi, Xingjuan, Liu, Min, Li, Dengwen, Wang, Jun, Aneja, Ritu, Zhou, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Centrosomal proteins intricately regulate diverse microtubule-mediated cellular activities, including cell polarization and migration. However, the direct participation of these proteins in angiogenesis, which involves vascular endothelial cell migration from preexisting blood vessels, remains elusive. Here we show that the centrosomal protein Cep70 is necessary for angiogenic response in mice. This protein is also required for tube formation and capillary sprouting in vitro from vascular endothelial cells. Wound healing and transwell assays reveal that Cep70 plays a significant role in endothelial cell migration. Depletion of Cep70 results in severe defects in membrane ruffling and centrosome reorientation, indicating a requirement for this protein in cell polarization. In addition, Cep70 is critically involved in microtubule rearrangement in response to the migratory stimulus. Our data further demonstrate that Cep70 is important for Cdc42 and Rac1 activation to promote angiogenesis. These findings thus establish Cep70 as a crucial regulator of the angiogenic process and emphasize the significance of microtubule rearrangement and cell polarization and migration in angiogenesis.
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.19954