Loading…

Managing Clustered Data Using Hierarchical Linear Modeling

Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nutrition education and behavior 2012-05, Vol.44 (3), p.271-277
Main Authors: Warne, Russell T., PhD, Li, Yan, MS, McKyer, E. Lisako J., PhD, MPH, Condie, Rachel, BS, Diep, Cassandra S., MS, Murano, Peter S., PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513
cites cdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513
container_end_page 277
container_issue 3
container_start_page 271
container_title Journal of nutrition education and behavior
container_volume 44
creator Warne, Russell T., PhD
Li, Yan, MS
McKyer, E. Lisako J., PhD, MPH
Condie, Rachel, BS
Diep, Cassandra S., MS
Murano, Peter S., PhD
description Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.
doi_str_mv 10.1016/j.jneb.2011.06.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010495428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ966596</ericid><els_id>S1499404611004702</els_id><sourcerecordid>2647101251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpaB7tHwihGLrJxs6VLF9bpRTCNE8mdNFmLWT5TirXY6eSHci_r9yZJJBFVxI637mSzmHskEPGgeNJm7U91ZkAzjPADHj-hu3xqqxSgQLexr1UKpUgcZfth9AC8EKAesd2hRA5SiX22Ocb05s7198li24KI3lqkm9mNMltmA8vHXnj7S9nTZcsXU_GJzdDQ10U37OdlekCfdiuB-z2_Ozn4jJdfr-4WpwuUysRxlSZigoh0RohCJSqy6KBnMsmX8kabSGrEsoSQdmoKZJgUBayVAZLqm3B8wN2vJl774c_E4VRr12w1HWmp2EKOmYBUhVSVBH99Apth8n38XX_KIF5XkGkxIayfgjB00rfe7c2_jFCM4e61XOyek5WA-qYbDR93I6e6jU1z5anKCNwtAHIO_ssn10rxEJhlL9s5RjVQ4xVB-uot9Q4T3bUzeD-f_3XV3YbO5hr-U2PFF6-qYPQoH_M1c_Ncw4gSxD5X_KSpFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010263380</pqid></control><display><type>article</type><title>Managing Clustered Data Using Hierarchical Linear Modeling</title><source>ScienceDirect Freedom Collection</source><source>ERIC</source><creator>Warne, Russell T., PhD ; Li, Yan, MS ; McKyer, E. Lisako J., PhD, MPH ; Condie, Rachel, BS ; Diep, Cassandra S., MS ; Murano, Peter S., PhD</creator><creatorcontrib>Warne, Russell T., PhD ; Li, Yan, MS ; McKyer, E. Lisako J., PhD, MPH ; Condie, Rachel, BS ; Diep, Cassandra S., MS ; Murano, Peter S., PhD</creatorcontrib><description>Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.</description><identifier>ISSN: 1499-4046</identifier><identifier>ISSN: 1878-2620</identifier><identifier>EISSN: 1878-2620</identifier><identifier>EISSN: 1708-8259</identifier><identifier>DOI: 10.1016/j.jneb.2011.06.013</identifier><identifier>PMID: 22236492</identifier><identifier>CODEN: JNUEBX</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomedical Research - methods ; Cluster Analysis ; Data Analysis ; Diet - statistics &amp; numerical data ; Eating Habits ; Evaluation Methods ; Feeding Behavior ; Female ; Food ; Gastroenterology and Hepatology ; hierarchical linear modeling ; Humans ; Infant ; Internal Medicine ; Linear Models ; Male ; multilevel models ; Multivariate Analysis ; Nutrition ; nutrition behavior ; Nutritional Sciences ; Sampling ; Statistical Analysis ; Statistics ; survey research ; Violations ; WIC program</subject><ispartof>Journal of nutrition education and behavior, 2012-05, Vol.44 (3), p.271-277</ispartof><rights>Society for Nutrition Education and Behavior</rights><rights>2012 Society for Nutrition Education and Behavior</rights><rights>Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May/Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</citedby><cites>FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ966596$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22236492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warne, Russell T., PhD</creatorcontrib><creatorcontrib>Li, Yan, MS</creatorcontrib><creatorcontrib>McKyer, E. Lisako J., PhD, MPH</creatorcontrib><creatorcontrib>Condie, Rachel, BS</creatorcontrib><creatorcontrib>Diep, Cassandra S., MS</creatorcontrib><creatorcontrib>Murano, Peter S., PhD</creatorcontrib><title>Managing Clustered Data Using Hierarchical Linear Modeling</title><title>Journal of nutrition education and behavior</title><addtitle>J Nutr Educ Behav</addtitle><description>Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.</description><subject>Biomedical Research - methods</subject><subject>Cluster Analysis</subject><subject>Data Analysis</subject><subject>Diet - statistics &amp; numerical data</subject><subject>Eating Habits</subject><subject>Evaluation Methods</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Food</subject><subject>Gastroenterology and Hepatology</subject><subject>hierarchical linear modeling</subject><subject>Humans</subject><subject>Infant</subject><subject>Internal Medicine</subject><subject>Linear Models</subject><subject>Male</subject><subject>multilevel models</subject><subject>Multivariate Analysis</subject><subject>Nutrition</subject><subject>nutrition behavior</subject><subject>Nutritional Sciences</subject><subject>Sampling</subject><subject>Statistical Analysis</subject><subject>Statistics</subject><subject>survey research</subject><subject>Violations</subject><subject>WIC program</subject><issn>1499-4046</issn><issn>1878-2620</issn><issn>1878-2620</issn><issn>1708-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp9kUtr3DAUhUVpaB7tHwihGLrJxs6VLF9bpRTCNE8mdNFmLWT5TirXY6eSHci_r9yZJJBFVxI637mSzmHskEPGgeNJm7U91ZkAzjPADHj-hu3xqqxSgQLexr1UKpUgcZfth9AC8EKAesd2hRA5SiX22Ocb05s7198li24KI3lqkm9mNMltmA8vHXnj7S9nTZcsXU_GJzdDQ10U37OdlekCfdiuB-z2_Ozn4jJdfr-4WpwuUysRxlSZigoh0RohCJSqy6KBnMsmX8kabSGrEsoSQdmoKZJgUBayVAZLqm3B8wN2vJl774c_E4VRr12w1HWmp2EKOmYBUhVSVBH99Apth8n38XX_KIF5XkGkxIayfgjB00rfe7c2_jFCM4e61XOyek5WA-qYbDR93I6e6jU1z5anKCNwtAHIO_ssn10rxEJhlL9s5RjVQ4xVB-uot9Q4T3bUzeD-f_3XV3YbO5hr-U2PFF6-qYPQoH_M1c_Ncw4gSxD5X_KSpFM</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Warne, Russell T., PhD</creator><creator>Li, Yan, MS</creator><creator>McKyer, E. Lisako J., PhD, MPH</creator><creator>Condie, Rachel, BS</creator><creator>Diep, Cassandra S., MS</creator><creator>Murano, Peter S., PhD</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Managing Clustered Data Using Hierarchical Linear Modeling</title><author>Warne, Russell T., PhD ; Li, Yan, MS ; McKyer, E. Lisako J., PhD, MPH ; Condie, Rachel, BS ; Diep, Cassandra S., MS ; Murano, Peter S., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomedical Research - methods</topic><topic>Cluster Analysis</topic><topic>Data Analysis</topic><topic>Diet - statistics &amp; numerical data</topic><topic>Eating Habits</topic><topic>Evaluation Methods</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Food</topic><topic>Gastroenterology and Hepatology</topic><topic>hierarchical linear modeling</topic><topic>Humans</topic><topic>Infant</topic><topic>Internal Medicine</topic><topic>Linear Models</topic><topic>Male</topic><topic>multilevel models</topic><topic>Multivariate Analysis</topic><topic>Nutrition</topic><topic>nutrition behavior</topic><topic>Nutritional Sciences</topic><topic>Sampling</topic><topic>Statistical Analysis</topic><topic>Statistics</topic><topic>survey research</topic><topic>Violations</topic><topic>WIC program</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warne, Russell T., PhD</creatorcontrib><creatorcontrib>Li, Yan, MS</creatorcontrib><creatorcontrib>McKyer, E. Lisako J., PhD, MPH</creatorcontrib><creatorcontrib>Condie, Rachel, BS</creatorcontrib><creatorcontrib>Diep, Cassandra S., MS</creatorcontrib><creatorcontrib>Murano, Peter S., PhD</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of nutrition education and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warne, Russell T., PhD</au><au>Li, Yan, MS</au><au>McKyer, E. Lisako J., PhD, MPH</au><au>Condie, Rachel, BS</au><au>Diep, Cassandra S., MS</au><au>Murano, Peter S., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ966596</ericid><atitle>Managing Clustered Data Using Hierarchical Linear Modeling</atitle><jtitle>Journal of nutrition education and behavior</jtitle><addtitle>J Nutr Educ Behav</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>44</volume><issue>3</issue><spage>271</spage><epage>277</epage><pages>271-277</pages><issn>1499-4046</issn><issn>1878-2620</issn><eissn>1878-2620</eissn><eissn>1708-8259</eissn><coden>JNUEBX</coden><abstract>Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22236492</pmid><doi>10.1016/j.jneb.2011.06.013</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1499-4046
ispartof Journal of nutrition education and behavior, 2012-05, Vol.44 (3), p.271-277
issn 1499-4046
1878-2620
1878-2620
1708-8259
language eng
recordid cdi_proquest_miscellaneous_1010495428
source ScienceDirect Freedom Collection; ERIC
subjects Biomedical Research - methods
Cluster Analysis
Data Analysis
Diet - statistics & numerical data
Eating Habits
Evaluation Methods
Feeding Behavior
Female
Food
Gastroenterology and Hepatology
hierarchical linear modeling
Humans
Infant
Internal Medicine
Linear Models
Male
multilevel models
Multivariate Analysis
Nutrition
nutrition behavior
Nutritional Sciences
Sampling
Statistical Analysis
Statistics
survey research
Violations
WIC program
title Managing Clustered Data Using Hierarchical Linear Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20Clustered%20Data%20Using%20Hierarchical%20Linear%20Modeling&rft.jtitle=Journal%20of%20nutrition%20education%20and%20behavior&rft.au=Warne,%20Russell%20T.,%20PhD&rft.date=2012-05-01&rft.volume=44&rft.issue=3&rft.spage=271&rft.epage=277&rft.pages=271-277&rft.issn=1499-4046&rft.eissn=1878-2620&rft.coden=JNUEBX&rft_id=info:doi/10.1016/j.jneb.2011.06.013&rft_dat=%3Cproquest_cross%3E2647101251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010263380&rft_id=info:pmid/22236492&rft_ericid=EJ966596&rfr_iscdi=true