Loading…
Managing Clustered Data Using Hierarchical Linear Modeling
Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical m...
Saved in:
Published in: | Journal of nutrition education and behavior 2012-05, Vol.44 (3), p.271-277 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513 |
---|---|
cites | cdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513 |
container_end_page | 277 |
container_issue | 3 |
container_start_page | 271 |
container_title | Journal of nutrition education and behavior |
container_volume | 44 |
creator | Warne, Russell T., PhD Li, Yan, MS McKyer, E. Lisako J., PhD, MPH Condie, Rachel, BS Diep, Cassandra S., MS Murano, Peter S., PhD |
description | Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context. |
doi_str_mv | 10.1016/j.jneb.2011.06.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010495428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ966596</ericid><els_id>S1499404611004702</els_id><sourcerecordid>2647101251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpaB7tHwihGLrJxs6VLF9bpRTCNE8mdNFmLWT5TirXY6eSHci_r9yZJJBFVxI637mSzmHskEPGgeNJm7U91ZkAzjPADHj-hu3xqqxSgQLexr1UKpUgcZfth9AC8EKAesd2hRA5SiX22Ocb05s7198li24KI3lqkm9mNMltmA8vHXnj7S9nTZcsXU_GJzdDQ10U37OdlekCfdiuB-z2_Ozn4jJdfr-4WpwuUysRxlSZigoh0RohCJSqy6KBnMsmX8kabSGrEsoSQdmoKZJgUBayVAZLqm3B8wN2vJl774c_E4VRr12w1HWmp2EKOmYBUhVSVBH99Apth8n38XX_KIF5XkGkxIayfgjB00rfe7c2_jFCM4e61XOyek5WA-qYbDR93I6e6jU1z5anKCNwtAHIO_ssn10rxEJhlL9s5RjVQ4xVB-uot9Q4T3bUzeD-f_3XV3YbO5hr-U2PFF6-qYPQoH_M1c_Ncw4gSxD5X_KSpFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010263380</pqid></control><display><type>article</type><title>Managing Clustered Data Using Hierarchical Linear Modeling</title><source>ScienceDirect Freedom Collection</source><source>ERIC</source><creator>Warne, Russell T., PhD ; Li, Yan, MS ; McKyer, E. Lisako J., PhD, MPH ; Condie, Rachel, BS ; Diep, Cassandra S., MS ; Murano, Peter S., PhD</creator><creatorcontrib>Warne, Russell T., PhD ; Li, Yan, MS ; McKyer, E. Lisako J., PhD, MPH ; Condie, Rachel, BS ; Diep, Cassandra S., MS ; Murano, Peter S., PhD</creatorcontrib><description>Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.</description><identifier>ISSN: 1499-4046</identifier><identifier>ISSN: 1878-2620</identifier><identifier>EISSN: 1878-2620</identifier><identifier>EISSN: 1708-8259</identifier><identifier>DOI: 10.1016/j.jneb.2011.06.013</identifier><identifier>PMID: 22236492</identifier><identifier>CODEN: JNUEBX</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomedical Research - methods ; Cluster Analysis ; Data Analysis ; Diet - statistics & numerical data ; Eating Habits ; Evaluation Methods ; Feeding Behavior ; Female ; Food ; Gastroenterology and Hepatology ; hierarchical linear modeling ; Humans ; Infant ; Internal Medicine ; Linear Models ; Male ; multilevel models ; Multivariate Analysis ; Nutrition ; nutrition behavior ; Nutritional Sciences ; Sampling ; Statistical Analysis ; Statistics ; survey research ; Violations ; WIC program</subject><ispartof>Journal of nutrition education and behavior, 2012-05, Vol.44 (3), p.271-277</ispartof><rights>Society for Nutrition Education and Behavior</rights><rights>2012 Society for Nutrition Education and Behavior</rights><rights>Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May/Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</citedby><cites>FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ966596$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22236492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warne, Russell T., PhD</creatorcontrib><creatorcontrib>Li, Yan, MS</creatorcontrib><creatorcontrib>McKyer, E. Lisako J., PhD, MPH</creatorcontrib><creatorcontrib>Condie, Rachel, BS</creatorcontrib><creatorcontrib>Diep, Cassandra S., MS</creatorcontrib><creatorcontrib>Murano, Peter S., PhD</creatorcontrib><title>Managing Clustered Data Using Hierarchical Linear Modeling</title><title>Journal of nutrition education and behavior</title><addtitle>J Nutr Educ Behav</addtitle><description>Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.</description><subject>Biomedical Research - methods</subject><subject>Cluster Analysis</subject><subject>Data Analysis</subject><subject>Diet - statistics & numerical data</subject><subject>Eating Habits</subject><subject>Evaluation Methods</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Food</subject><subject>Gastroenterology and Hepatology</subject><subject>hierarchical linear modeling</subject><subject>Humans</subject><subject>Infant</subject><subject>Internal Medicine</subject><subject>Linear Models</subject><subject>Male</subject><subject>multilevel models</subject><subject>Multivariate Analysis</subject><subject>Nutrition</subject><subject>nutrition behavior</subject><subject>Nutritional Sciences</subject><subject>Sampling</subject><subject>Statistical Analysis</subject><subject>Statistics</subject><subject>survey research</subject><subject>Violations</subject><subject>WIC program</subject><issn>1499-4046</issn><issn>1878-2620</issn><issn>1878-2620</issn><issn>1708-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp9kUtr3DAUhUVpaB7tHwihGLrJxs6VLF9bpRTCNE8mdNFmLWT5TirXY6eSHci_r9yZJJBFVxI637mSzmHskEPGgeNJm7U91ZkAzjPADHj-hu3xqqxSgQLexr1UKpUgcZfth9AC8EKAesd2hRA5SiX22Ocb05s7198li24KI3lqkm9mNMltmA8vHXnj7S9nTZcsXU_GJzdDQ10U37OdlekCfdiuB-z2_Ozn4jJdfr-4WpwuUysRxlSZigoh0RohCJSqy6KBnMsmX8kabSGrEsoSQdmoKZJgUBayVAZLqm3B8wN2vJl774c_E4VRr12w1HWmp2EKOmYBUhVSVBH99Apth8n38XX_KIF5XkGkxIayfgjB00rfe7c2_jFCM4e61XOyek5WA-qYbDR93I6e6jU1z5anKCNwtAHIO_ssn10rxEJhlL9s5RjVQ4xVB-uot9Q4T3bUzeD-f_3XV3YbO5hr-U2PFF6-qYPQoH_M1c_Ncw4gSxD5X_KSpFM</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Warne, Russell T., PhD</creator><creator>Li, Yan, MS</creator><creator>McKyer, E. Lisako J., PhD, MPH</creator><creator>Condie, Rachel, BS</creator><creator>Diep, Cassandra S., MS</creator><creator>Murano, Peter S., PhD</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Managing Clustered Data Using Hierarchical Linear Modeling</title><author>Warne, Russell T., PhD ; Li, Yan, MS ; McKyer, E. Lisako J., PhD, MPH ; Condie, Rachel, BS ; Diep, Cassandra S., MS ; Murano, Peter S., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomedical Research - methods</topic><topic>Cluster Analysis</topic><topic>Data Analysis</topic><topic>Diet - statistics & numerical data</topic><topic>Eating Habits</topic><topic>Evaluation Methods</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Food</topic><topic>Gastroenterology and Hepatology</topic><topic>hierarchical linear modeling</topic><topic>Humans</topic><topic>Infant</topic><topic>Internal Medicine</topic><topic>Linear Models</topic><topic>Male</topic><topic>multilevel models</topic><topic>Multivariate Analysis</topic><topic>Nutrition</topic><topic>nutrition behavior</topic><topic>Nutritional Sciences</topic><topic>Sampling</topic><topic>Statistical Analysis</topic><topic>Statistics</topic><topic>survey research</topic><topic>Violations</topic><topic>WIC program</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warne, Russell T., PhD</creatorcontrib><creatorcontrib>Li, Yan, MS</creatorcontrib><creatorcontrib>McKyer, E. Lisako J., PhD, MPH</creatorcontrib><creatorcontrib>Condie, Rachel, BS</creatorcontrib><creatorcontrib>Diep, Cassandra S., MS</creatorcontrib><creatorcontrib>Murano, Peter S., PhD</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of nutrition education and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warne, Russell T., PhD</au><au>Li, Yan, MS</au><au>McKyer, E. Lisako J., PhD, MPH</au><au>Condie, Rachel, BS</au><au>Diep, Cassandra S., MS</au><au>Murano, Peter S., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ966596</ericid><atitle>Managing Clustered Data Using Hierarchical Linear Modeling</atitle><jtitle>Journal of nutrition education and behavior</jtitle><addtitle>J Nutr Educ Behav</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>44</volume><issue>3</issue><spage>271</spage><epage>277</epage><pages>271-277</pages><issn>1499-4046</issn><issn>1878-2620</issn><eissn>1878-2620</eissn><eissn>1708-8259</eissn><coden>JNUEBX</coden><abstract>Abstract Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence assumption and lead to correct analysis of data, yet it is rarely used in nutrition research. The purpose of this viewpoint is to illustrate the benefits of hierarchical linear modeling within a nutrition research context.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22236492</pmid><doi>10.1016/j.jneb.2011.06.013</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1499-4046 |
ispartof | Journal of nutrition education and behavior, 2012-05, Vol.44 (3), p.271-277 |
issn | 1499-4046 1878-2620 1878-2620 1708-8259 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010495428 |
source | ScienceDirect Freedom Collection; ERIC |
subjects | Biomedical Research - methods Cluster Analysis Data Analysis Diet - statistics & numerical data Eating Habits Evaluation Methods Feeding Behavior Female Food Gastroenterology and Hepatology hierarchical linear modeling Humans Infant Internal Medicine Linear Models Male multilevel models Multivariate Analysis Nutrition nutrition behavior Nutritional Sciences Sampling Statistical Analysis Statistics survey research Violations WIC program |
title | Managing Clustered Data Using Hierarchical Linear Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20Clustered%20Data%20Using%20Hierarchical%20Linear%20Modeling&rft.jtitle=Journal%20of%20nutrition%20education%20and%20behavior&rft.au=Warne,%20Russell%20T.,%20PhD&rft.date=2012-05-01&rft.volume=44&rft.issue=3&rft.spage=271&rft.epage=277&rft.pages=271-277&rft.issn=1499-4046&rft.eissn=1878-2620&rft.coden=JNUEBX&rft_id=info:doi/10.1016/j.jneb.2011.06.013&rft_dat=%3Cproquest_cross%3E2647101251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-9a8e5246ca22e099b75d0314d3f4b6c5487077609c99b9e40a645479a67ebc513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010263380&rft_id=info:pmid/22236492&rft_ericid=EJ966596&rfr_iscdi=true |