Loading…
Fabrication, Sinterability, and Mechanical Properties of Lead Zirconate Titanate/Silver Composites
High‐toughness and high‐strength lead zirconate titanate (PZT) composites that contain fine silver particles were successfully fabricated at low sintering temperatures. Addition of silver to a PZT matrix did not result in unwanted reaction phases; however, some silver diffused toward the perovskite...
Saved in:
Published in: | Journal of the American Ceramic Society 1999-09, Vol.82 (9), p.2417-2422 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High‐toughness and high‐strength lead zirconate titanate (PZT) composites that contain fine silver particles were successfully fabricated at low sintering temperatures. Addition of silver to a PZT matrix did not result in unwanted reaction phases; however, some silver diffused toward the perovskite crystal structure. A small quantity of silver accelerated the sinterability of the PZT composites. The formation of oxygen vacancies due to the partial substitution of silver appeared to enhance the sinterability of the PZT. Fracture toughness depended on the size and degree of sphericity of the silver particles, and SEM observations on crack propagation suggested that the toughening mechanism in the PZT/Ag composites involves crack bridging resulting from the ductile behavior of silver particles. It is proposed that high fracture strength in PZT/1 to 5 vol% Ag composites results from the relaxation of transformation‐induced internal stress by the silver particles. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/j.1151-2916.1999.tb02099.x |