Loading…

Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling

This study investigated the pool boiling critical heat flux (CHF) of water-based nano-fluids under atmospheric pressure for Invessel Retention (IR)–External Vessel Cooling (EVC). The heated surface was a stainless steel foil inclined at different orientation angle from 0° (horizontal downward facing...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2012-03, Vol.35, p.157-165
Main Authors: Pham, Q.T., Kim, T.I., Lee, S.S., Chang, S.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3
cites cdi_FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3
container_end_page 165
container_issue
container_start_page 157
container_title Applied thermal engineering
container_volume 35
creator Pham, Q.T.
Kim, T.I.
Lee, S.S.
Chang, S.H.
description This study investigated the pool boiling critical heat flux (CHF) of water-based nano-fluids under atmospheric pressure for Invessel Retention (IR)–External Vessel Cooling (EVC). The heated surface was a stainless steel foil inclined at different orientation angle from 0° (horizontal downward facing position) to 90° (vertical position). Three working nano-fluids with high suspension stability were selected by the zeta potential method to investigate the effect of each nano-fluid on CHF at the heated surface, which were 0.05% Alumine (Al2O3), 0.05% carbon nanotubes (CNT) + 10% boric acid and 0.05% Al2O3 + 0.05% CNT. It was observed that these nano-fluids enhanced CHF significantly (up to 220%) compared to deionized (DI) water. Furthermore, for all test fluids, CHF increased when the orientation angle increased. The surface characterization after boiling tests shows that the CHF enhancement with nano-fluids can be related to the increase of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes. ▸ Selection of high suspension stability nano-fluids by zeta potential method (0.05% aluminum oxide (Al2O3); 0.05% carbon nanotubes (CNT) + 10% boric acid; and 0.05% Al2O3 + 0.05% CNT). ▸ Nano-fluids enhanced critical heat flux (CHF) significantly (up to 220%) compared to deionized (DI) water. ▸ CHF increased when the orientation angle increased. ▸ CHF enhancement with nano-fluids can be related to the increases of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes.
doi_str_mv 10.1016/j.applthermaleng.2011.10.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010877537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431111005552</els_id><sourcerecordid>1010877537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhmeh4PUdslBwMzWZS2YCbqRULQiCqNshkzmnTUmTmqSiO9_BN_RJTGkR3LkK4Xz_fzhflp0xOmKU8cvFSK5WJs7BL6UBOxsVlLE0GlHW7GWHrKxFXpWMHWRHISwoZUXbVIfZMLFzaRUswUbikCivo1bSkDnISNCs38k6aDsjVlqXp78eAkHnydS-QQhgyCPElNXOfn9-Td4jeJvSL9vZ2DmTwifZPkoT4HT3HmfPN5On8V1-_3A7HV_f56qqRcwRlRANF6JnVc8b0aNoKWKPqi4bEDXDdhh4jxxpoQQf-qrlUEJFSyp6jlgeZxfb3pV3r2sIsVvqoMAYacGtQ5dE0bZpUltCr7ao8i4ED9itvF5K_5GgDce7RfdXaLcRupkmoSl-vtskQ7KFPjnU4bejqDkTBS0Td7PlIJ39psF3QWlIvgftQcVucPp_C38AYhSZ-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010877537</pqid></control><display><type>article</type><title>Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling</title><source>ScienceDirect Freedom Collection</source><creator>Pham, Q.T. ; Kim, T.I. ; Lee, S.S. ; Chang, S.H.</creator><creatorcontrib>Pham, Q.T. ; Kim, T.I. ; Lee, S.S. ; Chang, S.H.</creatorcontrib><description>This study investigated the pool boiling critical heat flux (CHF) of water-based nano-fluids under atmospheric pressure for Invessel Retention (IR)–External Vessel Cooling (EVC). The heated surface was a stainless steel foil inclined at different orientation angle from 0° (horizontal downward facing position) to 90° (vertical position). Three working nano-fluids with high suspension stability were selected by the zeta potential method to investigate the effect of each nano-fluid on CHF at the heated surface, which were 0.05% Alumine (Al2O3), 0.05% carbon nanotubes (CNT) + 10% boric acid and 0.05% Al2O3 + 0.05% CNT. It was observed that these nano-fluids enhanced CHF significantly (up to 220%) compared to deionized (DI) water. Furthermore, for all test fluids, CHF increased when the orientation angle increased. The surface characterization after boiling tests shows that the CHF enhancement with nano-fluids can be related to the increase of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes. ▸ Selection of high suspension stability nano-fluids by zeta potential method (0.05% aluminum oxide (Al2O3); 0.05% carbon nanotubes (CNT) + 10% boric acid; and 0.05% Al2O3 + 0.05% CNT). ▸ Nano-fluids enhanced critical heat flux (CHF) significantly (up to 220%) compared to deionized (DI) water. ▸ CHF increased when the orientation angle increased. ▸ CHF enhancement with nano-fluids can be related to the increases of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2011.10.017</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; CHF ; Contact angle ; Cooling ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat flux ; Heat transfer ; IVR ; Nano-fluids ; Nanocomposites ; Nanomaterials ; Nanostructure ; Orientation ; Pool boiling ; Roughness ; Theoretical studies. Data and constants. Metering ; Vessels</subject><ispartof>Applied thermal engineering, 2012-03, Vol.35, p.157-165</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3</citedby><cites>FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25619203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Q.T.</creatorcontrib><creatorcontrib>Kim, T.I.</creatorcontrib><creatorcontrib>Lee, S.S.</creatorcontrib><creatorcontrib>Chang, S.H.</creatorcontrib><title>Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling</title><title>Applied thermal engineering</title><description>This study investigated the pool boiling critical heat flux (CHF) of water-based nano-fluids under atmospheric pressure for Invessel Retention (IR)–External Vessel Cooling (EVC). The heated surface was a stainless steel foil inclined at different orientation angle from 0° (horizontal downward facing position) to 90° (vertical position). Three working nano-fluids with high suspension stability were selected by the zeta potential method to investigate the effect of each nano-fluid on CHF at the heated surface, which were 0.05% Alumine (Al2O3), 0.05% carbon nanotubes (CNT) + 10% boric acid and 0.05% Al2O3 + 0.05% CNT. It was observed that these nano-fluids enhanced CHF significantly (up to 220%) compared to deionized (DI) water. Furthermore, for all test fluids, CHF increased when the orientation angle increased. The surface characterization after boiling tests shows that the CHF enhancement with nano-fluids can be related to the increase of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes. ▸ Selection of high suspension stability nano-fluids by zeta potential method (0.05% aluminum oxide (Al2O3); 0.05% carbon nanotubes (CNT) + 10% boric acid; and 0.05% Al2O3 + 0.05% CNT). ▸ Nano-fluids enhanced critical heat flux (CHF) significantly (up to 220%) compared to deionized (DI) water. ▸ CHF increased when the orientation angle increased. ▸ CHF enhancement with nano-fluids can be related to the increases of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>CHF</subject><subject>Contact angle</subject><subject>Cooling</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>IVR</subject><subject>Nano-fluids</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Orientation</subject><subject>Pool boiling</subject><subject>Roughness</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vessels</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhmeh4PUdslBwMzWZS2YCbqRULQiCqNshkzmnTUmTmqSiO9_BN_RJTGkR3LkK4Xz_fzhflp0xOmKU8cvFSK5WJs7BL6UBOxsVlLE0GlHW7GWHrKxFXpWMHWRHISwoZUXbVIfZMLFzaRUswUbikCivo1bSkDnISNCs38k6aDsjVlqXp78eAkHnydS-QQhgyCPElNXOfn9-Td4jeJvSL9vZ2DmTwifZPkoT4HT3HmfPN5On8V1-_3A7HV_f56qqRcwRlRANF6JnVc8b0aNoKWKPqi4bEDXDdhh4jxxpoQQf-qrlUEJFSyp6jlgeZxfb3pV3r2sIsVvqoMAYacGtQ5dE0bZpUltCr7ao8i4ED9itvF5K_5GgDce7RfdXaLcRupkmoSl-vtskQ7KFPjnU4bejqDkTBS0Td7PlIJ39psF3QWlIvgftQcVucPp_C38AYhSZ-w</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Pham, Q.T.</creator><creator>Kim, T.I.</creator><creator>Lee, S.S.</creator><creator>Chang, S.H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20120301</creationdate><title>Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling</title><author>Pham, Q.T. ; Kim, T.I. ; Lee, S.S. ; Chang, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>CHF</topic><topic>Contact angle</topic><topic>Cooling</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>IVR</topic><topic>Nano-fluids</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Orientation</topic><topic>Pool boiling</topic><topic>Roughness</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Q.T.</creatorcontrib><creatorcontrib>Kim, T.I.</creatorcontrib><creatorcontrib>Lee, S.S.</creatorcontrib><creatorcontrib>Chang, S.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Q.T.</au><au>Kim, T.I.</au><au>Lee, S.S.</au><au>Chang, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling</atitle><jtitle>Applied thermal engineering</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>35</volume><spage>157</spage><epage>165</epage><pages>157-165</pages><issn>1359-4311</issn><abstract>This study investigated the pool boiling critical heat flux (CHF) of water-based nano-fluids under atmospheric pressure for Invessel Retention (IR)–External Vessel Cooling (EVC). The heated surface was a stainless steel foil inclined at different orientation angle from 0° (horizontal downward facing position) to 90° (vertical position). Three working nano-fluids with high suspension stability were selected by the zeta potential method to investigate the effect of each nano-fluid on CHF at the heated surface, which were 0.05% Alumine (Al2O3), 0.05% carbon nanotubes (CNT) + 10% boric acid and 0.05% Al2O3 + 0.05% CNT. It was observed that these nano-fluids enhanced CHF significantly (up to 220%) compared to deionized (DI) water. Furthermore, for all test fluids, CHF increased when the orientation angle increased. The surface characterization after boiling tests shows that the CHF enhancement with nano-fluids can be related to the increase of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes. ▸ Selection of high suspension stability nano-fluids by zeta potential method (0.05% aluminum oxide (Al2O3); 0.05% carbon nanotubes (CNT) + 10% boric acid; and 0.05% Al2O3 + 0.05% CNT). ▸ Nano-fluids enhanced critical heat flux (CHF) significantly (up to 220%) compared to deionized (DI) water. ▸ CHF increased when the orientation angle increased. ▸ CHF enhancement with nano-fluids can be related to the increases of both surface roughness and wettability caused by nanoparticle deposition during the boiling processes.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2011.10.017</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2012-03, Vol.35, p.157-165
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1010877537
source ScienceDirect Freedom Collection
subjects Applied sciences
Boiling
CHF
Contact angle
Cooling
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat flux
Heat transfer
IVR
Nano-fluids
Nanocomposites
Nanomaterials
Nanostructure
Orientation
Pool boiling
Roughness
Theoretical studies. Data and constants. Metering
Vessels
title Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20critical%20heat%20flux%20using%20nano-fluids%20for%20Invessel%20Retention%E2%80%93External%20Vessel%20Cooling&rft.jtitle=Applied%20thermal%20engineering&rft.au=Pham,%20Q.T.&rft.date=2012-03-01&rft.volume=35&rft.spage=157&rft.epage=165&rft.pages=157-165&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2011.10.017&rft_dat=%3Cproquest_cross%3E1010877537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-ffc997699b14b679bf980ffbfc537e951f8dd6bf6f02c96db486e3e40309b6ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010877537&rft_id=info:pmid/&rfr_iscdi=true