Loading…
Characterization and optimization of a printed, primary silver–zinc battery
► Printed silver–zinc primary with PEO electrolyte. ► High energy densities of 4.1 ± 0.3 mWh cm −2 at current densities of 1.8 mA cm −2. ► Impedance spectroscopy modeling of planar battery. The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags h...
Saved in:
Published in: | Journal of power sources 2012-02, Vol.199, p.367-372 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463 |
container_end_page | 372 |
container_issue | |
container_start_page | 367 |
container_title | Journal of power sources |
container_volume | 199 |
creator | Braam, Kyle T. Volkman, Steven K. Subramanian, Vivek |
description | ► Printed silver–zinc primary with PEO electrolyte. ► High energy densities of 4.1
±
0.3
mWh
cm
−2 at current densities of 1.8
mA
cm
−2. ► Impedance spectroscopy modeling of planar battery.
The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags has resulted in a need for high energy microbatteries. Printed batteries are particularly interesting because of the potential for low material loss, low processing cost, and ease of integration into low-profile flexible electronic systems. We have developed a two-step printing technique to deposit an alkaline electrolyte for a printed silver–zinc battery. The fabricated batteries are characterized with galvanostatic measurements and electrochemical impedance spectroscopy using a three electrode setup with a zinc reference electrode. High silver utilization of 94
±
3% and an areal energy density of 4.1
±
0.3
mWh
cm
−2 are achieved with a 57:29:14 H
2O:KOH:PEO (
M
v
=
600,000) electrolyte at a
C/2 discharge rate 1.8
mA
cm
−2. |
doi_str_mv | 10.1016/j.jpowsour.2011.09.076 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010877607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311018477</els_id><sourcerecordid>1010877607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBZQNEgsS_JPEzg5U8ScVsYG1NXFs4SiNi50WtSvuwA05Ca7asmU1o9H33ug9hM4Jzggm5XWbtXP3GdzCZxQTkuEqw7w8QCMiOEspL4pDNMKMi5Tzgh2jkxBajCPJ8Qg9T97Bgxq0t2sYrOsT6JvEzQc72x-cSSCZe9sPurnaLDPwqyTYbqn9z9f32vYqqWGIFqtTdGSgC_psN8fo7f7udfKYTl8enia301TlORlSJkBBVRVMEw61yRk0QOsCgOWCmqaqVS0qxbUwGItGUWwMZawmOVWG0rxkY3S59Z1797HQYZAzG5TuOui1WwQZe8GC8xLziJZbVHkXgtdG7hJEaMOVspX7_uSmP4krGfuLwovdDwgKOuOhVzb8qWlREIoFidzNltMx8NJqL4Oyule6sV6rQTbO_vfqFzSGjL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010877607</pqid></control><display><type>article</type><title>Characterization and optimization of a printed, primary silver–zinc battery</title><source>ScienceDirect Freedom Collection</source><creator>Braam, Kyle T. ; Volkman, Steven K. ; Subramanian, Vivek</creator><creatorcontrib>Braam, Kyle T. ; Volkman, Steven K. ; Subramanian, Vivek</creatorcontrib><description>► Printed silver–zinc primary with PEO electrolyte. ► High energy densities of 4.1
±
0.3
mWh
cm
−2 at current densities of 1.8
mA
cm
−2. ► Impedance spectroscopy modeling of planar battery.
The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags has resulted in a need for high energy microbatteries. Printed batteries are particularly interesting because of the potential for low material loss, low processing cost, and ease of integration into low-profile flexible electronic systems. We have developed a two-step printing technique to deposit an alkaline electrolyte for a printed silver–zinc battery. The fabricated batteries are characterized with galvanostatic measurements and electrochemical impedance spectroscopy using a three electrode setup with a zinc reference electrode. High silver utilization of 94
±
3% and an areal energy density of 4.1
±
0.3
mWh
cm
−2 are achieved with a 57:29:14 H
2O:KOH:PEO (
M
v
=
600,000) electrolyte at a
C/2 discharge rate 1.8
mA
cm
−2.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.09.076</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkaline ; Applied sciences ; Battery ; Direct energy conversion and energy accumulation ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Electrodes ; Electrolytes ; Electronic systems ; Exact sciences and technology ; Impedance spectroscopy ; Microorganisms ; Primary ; Printed battery ; silver–zinc ; Zinc</subject><ispartof>Journal of power sources, 2012-02, Vol.199, p.367-372</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463</citedby><cites>FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25512081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Braam, Kyle T.</creatorcontrib><creatorcontrib>Volkman, Steven K.</creatorcontrib><creatorcontrib>Subramanian, Vivek</creatorcontrib><title>Characterization and optimization of a printed, primary silver–zinc battery</title><title>Journal of power sources</title><description>► Printed silver–zinc primary with PEO electrolyte. ► High energy densities of 4.1
±
0.3
mWh
cm
−2 at current densities of 1.8
mA
cm
−2. ► Impedance spectroscopy modeling of planar battery.
The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags has resulted in a need for high energy microbatteries. Printed batteries are particularly interesting because of the potential for low material loss, low processing cost, and ease of integration into low-profile flexible electronic systems. We have developed a two-step printing technique to deposit an alkaline electrolyte for a printed silver–zinc battery. The fabricated batteries are characterized with galvanostatic measurements and electrochemical impedance spectroscopy using a three electrode setup with a zinc reference electrode. High silver utilization of 94
±
3% and an areal energy density of 4.1
±
0.3
mWh
cm
−2 are achieved with a 57:29:14 H
2O:KOH:PEO (
M
v
=
600,000) electrolyte at a
C/2 discharge rate 1.8
mA
cm
−2.</description><subject>Alkaline</subject><subject>Applied sciences</subject><subject>Battery</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronic systems</subject><subject>Exact sciences and technology</subject><subject>Impedance spectroscopy</subject><subject>Microorganisms</subject><subject>Primary</subject><subject>Printed battery</subject><subject>silver–zinc</subject><subject>Zinc</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBZQNEgsS_JPEzg5U8ScVsYG1NXFs4SiNi50WtSvuwA05Ca7asmU1o9H33ug9hM4Jzggm5XWbtXP3GdzCZxQTkuEqw7w8QCMiOEspL4pDNMKMi5Tzgh2jkxBajCPJ8Qg9T97Bgxq0t2sYrOsT6JvEzQc72x-cSSCZe9sPurnaLDPwqyTYbqn9z9f32vYqqWGIFqtTdGSgC_psN8fo7f7udfKYTl8enia301TlORlSJkBBVRVMEw61yRk0QOsCgOWCmqaqVS0qxbUwGItGUWwMZawmOVWG0rxkY3S59Z1797HQYZAzG5TuOui1WwQZe8GC8xLziJZbVHkXgtdG7hJEaMOVspX7_uSmP4krGfuLwovdDwgKOuOhVzb8qWlREIoFidzNltMx8NJqL4Oyule6sV6rQTbO_vfqFzSGjL4</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Braam, Kyle T.</creator><creator>Volkman, Steven K.</creator><creator>Subramanian, Vivek</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Characterization and optimization of a printed, primary silver–zinc battery</title><author>Braam, Kyle T. ; Volkman, Steven K. ; Subramanian, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alkaline</topic><topic>Applied sciences</topic><topic>Battery</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronic systems</topic><topic>Exact sciences and technology</topic><topic>Impedance spectroscopy</topic><topic>Microorganisms</topic><topic>Primary</topic><topic>Printed battery</topic><topic>silver–zinc</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braam, Kyle T.</creatorcontrib><creatorcontrib>Volkman, Steven K.</creatorcontrib><creatorcontrib>Subramanian, Vivek</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braam, Kyle T.</au><au>Volkman, Steven K.</au><au>Subramanian, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and optimization of a printed, primary silver–zinc battery</atitle><jtitle>Journal of power sources</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>199</volume><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► Printed silver–zinc primary with PEO electrolyte. ► High energy densities of 4.1
±
0.3
mWh
cm
−2 at current densities of 1.8
mA
cm
−2. ► Impedance spectroscopy modeling of planar battery.
The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags has resulted in a need for high energy microbatteries. Printed batteries are particularly interesting because of the potential for low material loss, low processing cost, and ease of integration into low-profile flexible electronic systems. We have developed a two-step printing technique to deposit an alkaline electrolyte for a printed silver–zinc battery. The fabricated batteries are characterized with galvanostatic measurements and electrochemical impedance spectroscopy using a three electrode setup with a zinc reference electrode. High silver utilization of 94
±
3% and an areal energy density of 4.1
±
0.3
mWh
cm
−2 are achieved with a 57:29:14 H
2O:KOH:PEO (
M
v
=
600,000) electrolyte at a
C/2 discharge rate 1.8
mA
cm
−2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2011.09.076</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2012-02, Vol.199, p.367-372 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010877607 |
source | ScienceDirect Freedom Collection |
subjects | Alkaline Applied sciences Battery Direct energy conversion and energy accumulation Electric batteries Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical impedance spectroscopy Electrodes Electrolytes Electronic systems Exact sciences and technology Impedance spectroscopy Microorganisms Primary Printed battery silver–zinc Zinc |
title | Characterization and optimization of a printed, primary silver–zinc battery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20optimization%20of%20a%20printed,%20primary%20silver%E2%80%93zinc%20battery&rft.jtitle=Journal%20of%20power%20sources&rft.au=Braam,%20Kyle%20T.&rft.date=2012-02-01&rft.volume=199&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2011.09.076&rft_dat=%3Cproquest_cross%3E1010877607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-38aca9953e17abf43ada2b5aa3482fd9bcb89c7e8f008dc20ff233b142cf22463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010877607&rft_id=info:pmid/&rfr_iscdi=true |