Loading…

CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES

In this paper, we first summarise the progress for the famous Chern conjecture, and then we consider n-dimensional closed hypersurfaces with constant mean curvature H in the unit sphere n+1 with n ≤ 8 and generalise the result of Cheng et al. (Q. M. Cheng, Y. J. He and H. Z. Li, Scalar curvature of...

Full description

Saved in:
Bibliographic Details
Published in:Glasgow mathematical journal 2012-01, Vol.54 (1), p.77-86
Main Authors: DENG, QIN-TAO, GU, HUI-LING, SU, YAN-HUI
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3
cites cdi_FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3
container_end_page 86
container_issue 1
container_start_page 77
container_title Glasgow mathematical journal
container_volume 54
creator DENG, QIN-TAO
GU, HUI-LING
SU, YAN-HUI
description In this paper, we first summarise the progress for the famous Chern conjecture, and then we consider n-dimensional closed hypersurfaces with constant mean curvature H in the unit sphere n+1 with n ≤ 8 and generalise the result of Cheng et al. (Q. M. Cheng, Y. J. He and H. Z. Li, Scalar curvature of hypersurfaces with constant mean curvature in a sphere, Glasg. Math. J. 51(2) (2009), 413–423). In order to be precise, we prove that if |H| ≤ ϵ(n), then there exists a constant δ(n, H) > 0, which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S = S0 and M is isometric to the Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n.
doi_str_mv 10.1017/S001708951100036X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010877970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S001708951100036X</cupid><sourcerecordid>1010877970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNviycvqxGyS5rgs0RbqtuwfqadlkybS0nZr0h789qa0ICheZhje7z1mBqFbDA8YMH8sIVQYCIoxABA2O0M9nDARUxCzc9Q7yPFBv0RX3i_DSMLUQ5BN8rJK8yp6lWkeZXXxllZ1IaPh-1QWZV08p5kso1EeldOhLGR5jS5su_Lm5tT7qH6WVTaMx5OXUZaOY03E0y5mRHHWKj3Xc2YZEdaAVRy0VpCwAaemJUoTSkXCqDVUWKYV1pZixpkw1JA-uj_mbl33uTd-16wXXpvVqt2Ybu-bcDUMOBccAnr3C112e7cJ2zUC00RwnrAA4SOkXee9M7bZusW6dV8h6RDGmz8vDB5y8rRr5RbzD_OT_L_rG6xAbYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915497746</pqid></control><display><type>article</type><title>CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES</title><source>Cambridge Journals Online</source><creator>DENG, QIN-TAO ; GU, HUI-LING ; SU, YAN-HUI</creator><creatorcontrib>DENG, QIN-TAO ; GU, HUI-LING ; SU, YAN-HUI</creatorcontrib><description>In this paper, we first summarise the progress for the famous Chern conjecture, and then we consider n-dimensional closed hypersurfaces with constant mean curvature H in the unit sphere n+1 with n ≤ 8 and generalise the result of Cheng et al. (Q. M. Cheng, Y. J. He and H. Z. Li, Scalar curvature of hypersurfaces with constant mean curvature in a sphere, Glasg. Math. J. 51(2) (2009), 413–423). In order to be precise, we prove that if |H| ≤ ϵ(n), then there exists a constant δ(n, H) &gt; 0, which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S = S0 and M is isometric to the Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S001708951100036X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Curvature ; Geometry ; Mathematical analysis ; Mathematics ; Scalars</subject><ispartof>Glasgow mathematical journal, 2012-01, Vol.54 (1), p.77-86</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3</citedby><cites>FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S001708951100036X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72931</link.rule.ids></links><search><creatorcontrib>DENG, QIN-TAO</creatorcontrib><creatorcontrib>GU, HUI-LING</creatorcontrib><creatorcontrib>SU, YAN-HUI</creatorcontrib><title>CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>In this paper, we first summarise the progress for the famous Chern conjecture, and then we consider n-dimensional closed hypersurfaces with constant mean curvature H in the unit sphere n+1 with n ≤ 8 and generalise the result of Cheng et al. (Q. M. Cheng, Y. J. He and H. Z. Li, Scalar curvature of hypersurfaces with constant mean curvature in a sphere, Glasg. Math. J. 51(2) (2009), 413–423). In order to be precise, we prove that if |H| ≤ ϵ(n), then there exists a constant δ(n, H) &gt; 0, which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S = S0 and M is isometric to the Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n.</description><subject>Curvature</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Scalars</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNviycvqxGyS5rgs0RbqtuwfqadlkybS0nZr0h789qa0ICheZhje7z1mBqFbDA8YMH8sIVQYCIoxABA2O0M9nDARUxCzc9Q7yPFBv0RX3i_DSMLUQ5BN8rJK8yp6lWkeZXXxllZ1IaPh-1QWZV08p5kso1EeldOhLGR5jS5su_Lm5tT7qH6WVTaMx5OXUZaOY03E0y5mRHHWKj3Xc2YZEdaAVRy0VpCwAaemJUoTSkXCqDVUWKYV1pZixpkw1JA-uj_mbl33uTd-16wXXpvVqt2Ybu-bcDUMOBccAnr3C112e7cJ2zUC00RwnrAA4SOkXee9M7bZusW6dV8h6RDGmz8vDB5y8rRr5RbzD_OT_L_rG6xAbYk</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>DENG, QIN-TAO</creator><creator>GU, HUI-LING</creator><creator>SU, YAN-HUI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201201</creationdate><title>CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES</title><author>DENG, QIN-TAO ; GU, HUI-LING ; SU, YAN-HUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Curvature</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DENG, QIN-TAO</creatorcontrib><creatorcontrib>GU, HUI-LING</creatorcontrib><creatorcontrib>SU, YAN-HUI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DENG, QIN-TAO</au><au>GU, HUI-LING</au><au>SU, YAN-HUI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2012-01</date><risdate>2012</risdate><volume>54</volume><issue>1</issue><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>In this paper, we first summarise the progress for the famous Chern conjecture, and then we consider n-dimensional closed hypersurfaces with constant mean curvature H in the unit sphere n+1 with n ≤ 8 and generalise the result of Cheng et al. (Q. M. Cheng, Y. J. He and H. Z. Li, Scalar curvature of hypersurfaces with constant mean curvature in a sphere, Glasg. Math. J. 51(2) (2009), 413–423). In order to be precise, we prove that if |H| ≤ ϵ(n), then there exists a constant δ(n, H) &gt; 0, which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S = S0 and M is isometric to the Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S001708951100036X</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2012-01, Vol.54 (1), p.77-86
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_miscellaneous_1010877970
source Cambridge Journals Online
subjects Curvature
Geometry
Mathematical analysis
Mathematics
Scalars
title CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T08%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONSTANT%20MEAN%20CURVATURE%20HYPERSURFACES%20IN%20SPHERES&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=DENG,%20QIN-TAO&rft.date=2012-01&rft.volume=54&rft.issue=1&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S001708951100036X&rft_dat=%3Cproquest_cross%3E1010877970%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-63b76abcdcd6f639fe0fb70ccb046875ea3bc3559465fe59f6cb1cf516769e5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915497746&rft_id=info:pmid/&rft_cupid=10_1017_S001708951100036X&rfr_iscdi=true