Loading…
Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films
Screening of the University of Helsinki Culture Collection for naturally good H2 producing cyanobacteria recently revealed several promising strains. One of the superior strains is Calothrix 336/3, an N2-fixing heterocystous filamentous cyanobacterium. Making use of an important feature of the Calot...
Saved in:
Published in: | International journal of hydrogen energy 2012-01, Vol.37 (1), p.151-161 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Screening of the University of Helsinki Culture Collection for naturally good H2 producing cyanobacteria recently revealed several promising strains. One of the superior strains is Calothrix 336/3, an N2-fixing heterocystous filamentous cyanobacterium. Making use of an important feature of the Calothrix 336/3 cells to adhere to the substrate, we applied an immobilization technique to improve H2 production capacity of this strain. We examined the basic properties of immobilization in Ca2+-alginate films in response to the production of H2 of the Calothrix 336/3 strain and as reference strains we used a model organism Anabaena PCC 7120 and its uptake hydrogenase mutant, Delta hupL, that allow us to compare the responses of different strains to alginate entrapment. Immobilization of the Calothrix 336/3 and Delta hupL mutant cells in Ca2+-alginate resulted in prolonged H2 production over several cycles. Immobilization of the Calothrix 336/3 cells was most successful and production of H2 could be measured even after 40 days after immobilization. |
---|---|
ISSN: | 0360-3199 |
DOI: | 10.1016/j.ijhydene.2011.09.088 |