Loading…
Numerical study of random lasing in three dimensional amplifying disordered media
In this paper, the lasing action in three-dimensional active random systems has been numerically investigated. Here, random systems of spherical dielectric particles imbedded in an active medium are considered. The quasi steady state approximation for the population inversion of the active medium is...
Saved in:
Published in: | Optics communications 2012-03, Vol.285 (6), p.1314-1322 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the lasing action in three-dimensional active random systems has been numerically investigated. Here, random systems of spherical dielectric particles imbedded in an active medium are considered. The quasi steady state approximation for the population inversion of the active medium is applied to solve three dimensional governing equations. Results show that when the density of particles increases to an upper limit, the intensity of lasing modes is enhanced. Also, the effects of pumping rate and particle size on the number of lasing modes and their intensity are studied. Lasing threshold of laser modes in different disordered systems is calculated and it is shown that by an appropriate selection of the central frequency of gain line-shape, the output power intensity of random lasers increases. These results are in agreement with the experimental results observed by others. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2011.10.018 |