Loading…
A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis
A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linea...
Saved in:
Published in: | Electrochimica acta 2012-01, Vol.60, p.321-328 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13 |
container_end_page | 328 |
container_issue | |
container_start_page | 321 |
container_title | Electrochimica acta |
container_volume | 60 |
creator | Deconinck, D. Van Damme, S. Deconinck, J. |
description | A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO
3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role. |
doi_str_mv | 10.1016/j.electacta.2011.11.070 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010906918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468611017439</els_id><sourcerecordid>1010906918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMoOK4-g7kIXrpNOp1Ot7dh8c_Cgh7Wc0hXqp0MnWRM0oKv4RObmVn2KnwQCL-qr6o-Qt5y1nLGhw_HFleEYqrajnHeVjHFnpEdH5VoxCin52THGBdNP4zDS_Iq5yNjTA2K7cjfPS3oT5hM2RJSiycMFkOhfluLa1wM1EeLK11iosV5pAZgqzTSsHlMDsxKs6u0KWc4LrQckF5GShEO6C-EN3BwwYWf9FR_MeeWfjep0LuP9OGAMWG5YLPJLr8mLxazZnzz-N6QH58_Pdx-be6_fbm73d83INRYGtuNvVhmjnxWAMiN4gC9hW6SwyKVlJMySlo52FnYXjIYZ8XAmBkXMQrg4oa8v_atI_3aMBftXQZcVxMwblnX67KJDRMfK6quKKSYc8JFn5LzJv2p0Jkb9FE_paDPKeiqmkKtfPdoYnLdcEkmgMtP5Z3su4lfHPZXDuvGvx0mncFhALQu1b7aRvdfr3-KoqVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010906918</pqid></control><display><type>article</type><title>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Deconinck, D. ; Van Damme, S. ; Deconinck, J.</creator><creatorcontrib>Deconinck, D. ; Van Damme, S. ; Deconinck, J.</creatorcontrib><description>A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO
3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2011.11.070</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anodes ; Applied sciences ; Cathodes ; Concentration ; Current efficiency ; Cutting ; Electrochemical machining ; Electrodes ; Electrolytes ; Exact sciences and technology ; Mathematical models ; Metals. Metallurgy ; Nanostructure ; Navier-Stokes equations ; Other machining methods ; Production techniques ; Steel ; Thermal properties ; Water depletion</subject><ispartof>Electrochimica acta, 2012-01, Vol.60, p.321-328</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</citedby><cites>FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25429118$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deconinck, D.</creatorcontrib><creatorcontrib>Van Damme, S.</creatorcontrib><creatorcontrib>Deconinck, J.</creatorcontrib><title>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</title><title>Electrochimica acta</title><description>A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO
3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Cathodes</subject><subject>Concentration</subject><subject>Current efficiency</subject><subject>Cutting</subject><subject>Electrochemical machining</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Nanostructure</subject><subject>Navier-Stokes equations</subject><subject>Other machining methods</subject><subject>Production techniques</subject><subject>Steel</subject><subject>Thermal properties</subject><subject>Water depletion</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoMoOK4-g7kIXrpNOp1Ot7dh8c_Cgh7Wc0hXqp0MnWRM0oKv4RObmVn2KnwQCL-qr6o-Qt5y1nLGhw_HFleEYqrajnHeVjHFnpEdH5VoxCin52THGBdNP4zDS_Iq5yNjTA2K7cjfPS3oT5hM2RJSiycMFkOhfluLa1wM1EeLK11iosV5pAZgqzTSsHlMDsxKs6u0KWc4LrQckF5GShEO6C-EN3BwwYWf9FR_MeeWfjep0LuP9OGAMWG5YLPJLr8mLxazZnzz-N6QH58_Pdx-be6_fbm73d83INRYGtuNvVhmjnxWAMiN4gC9hW6SwyKVlJMySlo52FnYXjIYZ8XAmBkXMQrg4oa8v_atI_3aMBftXQZcVxMwblnX67KJDRMfK6quKKSYc8JFn5LzJv2p0Jkb9FE_paDPKeiqmkKtfPdoYnLdcEkmgMtP5Z3su4lfHPZXDuvGvx0mncFhALQu1b7aRvdfr3-KoqVm</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Deconinck, D.</creator><creator>Van Damme, S.</creator><creator>Deconinck, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120115</creationdate><title>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</title><author>Deconinck, D. ; Van Damme, S. ; Deconinck, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Cathodes</topic><topic>Concentration</topic><topic>Current efficiency</topic><topic>Cutting</topic><topic>Electrochemical machining</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Nanostructure</topic><topic>Navier-Stokes equations</topic><topic>Other machining methods</topic><topic>Production techniques</topic><topic>Steel</topic><topic>Thermal properties</topic><topic>Water depletion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deconinck, D.</creatorcontrib><creatorcontrib>Van Damme, S.</creatorcontrib><creatorcontrib>Deconinck, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deconinck, D.</au><au>Van Damme, S.</au><au>Deconinck, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</atitle><jtitle>Electrochimica acta</jtitle><date>2012-01-15</date><risdate>2012</risdate><volume>60</volume><spage>321</spage><epage>328</epage><pages>321-328</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO
3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2011.11.070</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2012-01, Vol.60, p.321-328 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010906918 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Anodes Applied sciences Cathodes Concentration Current efficiency Cutting Electrochemical machining Electrodes Electrolytes Exact sciences and technology Mathematical models Metals. Metallurgy Nanostructure Navier-Stokes equations Other machining methods Production techniques Steel Thermal properties Water depletion |
title | A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20temperature%20dependent%20multi-ion%20model%20for%20time%20accurate%20numerical%20simulation%20of%20the%20electrochemical%20machining%20process.%20Part%20I:%20Theoretical%20basis&rft.jtitle=Electrochimica%20acta&rft.au=Deconinck,%20D.&rft.date=2012-01-15&rft.volume=60&rft.spage=321&rft.epage=328&rft.pages=321-328&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2011.11.070&rft_dat=%3Cproquest_cross%3E1010906918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010906918&rft_id=info:pmid/&rfr_iscdi=true |