Loading…

A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis

A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linea...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2012-01, Vol.60, p.321-328
Main Authors: Deconinck, D., Van Damme, S., Deconinck, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13
cites cdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13
container_end_page 328
container_issue
container_start_page 321
container_title Electrochimica acta
container_volume 60
creator Deconinck, D.
Van Damme, S.
Deconinck, J.
description A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO 3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.
doi_str_mv 10.1016/j.electacta.2011.11.070
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010906918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468611017439</els_id><sourcerecordid>1010906918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMoOK4-g7kIXrpNOp1Ot7dh8c_Cgh7Wc0hXqp0MnWRM0oKv4RObmVn2KnwQCL-qr6o-Qt5y1nLGhw_HFleEYqrajnHeVjHFnpEdH5VoxCin52THGBdNP4zDS_Iq5yNjTA2K7cjfPS3oT5hM2RJSiycMFkOhfluLa1wM1EeLK11iosV5pAZgqzTSsHlMDsxKs6u0KWc4LrQckF5GShEO6C-EN3BwwYWf9FR_MeeWfjep0LuP9OGAMWG5YLPJLr8mLxazZnzz-N6QH58_Pdx-be6_fbm73d83INRYGtuNvVhmjnxWAMiN4gC9hW6SwyKVlJMySlo52FnYXjIYZ8XAmBkXMQrg4oa8v_atI_3aMBftXQZcVxMwblnX67KJDRMfK6quKKSYc8JFn5LzJv2p0Jkb9FE_paDPKeiqmkKtfPdoYnLdcEkmgMtP5Z3su4lfHPZXDuvGvx0mncFhALQu1b7aRvdfr3-KoqVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010906918</pqid></control><display><type>article</type><title>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Deconinck, D. ; Van Damme, S. ; Deconinck, J.</creator><creatorcontrib>Deconinck, D. ; Van Damme, S. ; Deconinck, J.</creatorcontrib><description>A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO 3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2011.11.070</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anodes ; Applied sciences ; Cathodes ; Concentration ; Current efficiency ; Cutting ; Electrochemical machining ; Electrodes ; Electrolytes ; Exact sciences and technology ; Mathematical models ; Metals. Metallurgy ; Nanostructure ; Navier-Stokes equations ; Other machining methods ; Production techniques ; Steel ; Thermal properties ; Water depletion</subject><ispartof>Electrochimica acta, 2012-01, Vol.60, p.321-328</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</citedby><cites>FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25429118$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deconinck, D.</creatorcontrib><creatorcontrib>Van Damme, S.</creatorcontrib><creatorcontrib>Deconinck, J.</creatorcontrib><title>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</title><title>Electrochimica acta</title><description>A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO 3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Cathodes</subject><subject>Concentration</subject><subject>Current efficiency</subject><subject>Cutting</subject><subject>Electrochemical machining</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Nanostructure</subject><subject>Navier-Stokes equations</subject><subject>Other machining methods</subject><subject>Production techniques</subject><subject>Steel</subject><subject>Thermal properties</subject><subject>Water depletion</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoMoOK4-g7kIXrpNOp1Ot7dh8c_Cgh7Wc0hXqp0MnWRM0oKv4RObmVn2KnwQCL-qr6o-Qt5y1nLGhw_HFleEYqrajnHeVjHFnpEdH5VoxCin52THGBdNP4zDS_Iq5yNjTA2K7cjfPS3oT5hM2RJSiycMFkOhfluLa1wM1EeLK11iosV5pAZgqzTSsHlMDsxKs6u0KWc4LrQckF5GShEO6C-EN3BwwYWf9FR_MeeWfjep0LuP9OGAMWG5YLPJLr8mLxazZnzz-N6QH58_Pdx-be6_fbm73d83INRYGtuNvVhmjnxWAMiN4gC9hW6SwyKVlJMySlo52FnYXjIYZ8XAmBkXMQrg4oa8v_atI_3aMBftXQZcVxMwblnX67KJDRMfK6quKKSYc8JFn5LzJv2p0Jkb9FE_paDPKeiqmkKtfPdoYnLdcEkmgMtP5Z3su4lfHPZXDuvGvx0mncFhALQu1b7aRvdfr3-KoqVm</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Deconinck, D.</creator><creator>Van Damme, S.</creator><creator>Deconinck, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120115</creationdate><title>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</title><author>Deconinck, D. ; Van Damme, S. ; Deconinck, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Cathodes</topic><topic>Concentration</topic><topic>Current efficiency</topic><topic>Cutting</topic><topic>Electrochemical machining</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Nanostructure</topic><topic>Navier-Stokes equations</topic><topic>Other machining methods</topic><topic>Production techniques</topic><topic>Steel</topic><topic>Thermal properties</topic><topic>Water depletion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deconinck, D.</creatorcontrib><creatorcontrib>Van Damme, S.</creatorcontrib><creatorcontrib>Deconinck, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deconinck, D.</au><au>Van Damme, S.</au><au>Deconinck, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis</atitle><jtitle>Electrochimica acta</jtitle><date>2012-01-15</date><risdate>2012</risdate><volume>60</volume><spage>321</spage><epage>328</epage><pages>321-328</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A new temperature dependent multi-domain model is presented for numerical simulation of the electrochemical machining process with a moving cathode tool. The method includes mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrolyte–electrode interface. Concentration and temperature dependent expressions are used for the diffusion coefficients and electrolyte viscosity. The electrolyte flow field is calculated using the laminar Navier–Stokes equations for viscous incompressible flow. Heat is generated in the bulk solution and in the electrical double layer. The electrodes are cooled by natural convection. The level set method is used for tracking the anode interface. The model is applied to the electrochemical machining of steel in a NaNO 3 supporting electrolyte. Hydrogen is formed at the cathode, and metal dissolution and oxygen evolution reactions are considered at the anode. The effect of water depletion at the electrodes is modeled by limiting the oxygen and hydrogen evolution reaction rates depending on the local surface water concentration. The heat conduction through electrodes and the heat production by the electrode reactions are found to play an important role.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2011.11.070</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2012-01, Vol.60, p.321-328
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1010906918
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Anodes
Applied sciences
Cathodes
Concentration
Current efficiency
Cutting
Electrochemical machining
Electrodes
Electrolytes
Exact sciences and technology
Mathematical models
Metals. Metallurgy
Nanostructure
Navier-Stokes equations
Other machining methods
Production techniques
Steel
Thermal properties
Water depletion
title A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20temperature%20dependent%20multi-ion%20model%20for%20time%20accurate%20numerical%20simulation%20of%20the%20electrochemical%20machining%20process.%20Part%20I:%20Theoretical%20basis&rft.jtitle=Electrochimica%20acta&rft.au=Deconinck,%20D.&rft.date=2012-01-15&rft.volume=60&rft.spage=321&rft.epage=328&rft.pages=321-328&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2011.11.070&rft_dat=%3Cproquest_cross%3E1010906918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-d2843fb1e1b7cce1a71cc4dc2956f575597a75d56db3d450c8b70caabef383c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010906918&rft_id=info:pmid/&rfr_iscdi=true