Loading…
A triple-frequency approach to retrieve microphysical snowfall parameters
Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft s...
Saved in:
Published in: | Journal of Geophysical Research 2011-06, Vol.116 (D11), p.n/a, Article D11203 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483 |
---|---|
cites | cdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483 |
container_end_page | n/a |
container_issue | D11 |
container_start_page | |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Kneifel, S. Kulie, M. S. Bennartz, R. |
description | Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases.
Key Points
Scattering properties of various snowflake models are compared
Triple‐frequency approach allows to distinguish between different snow habits |
doi_str_mv | 10.1029/2010JD015430 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1011203095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011203095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</originalsourceid><addsrcrecordid>eNp9kE9rFEEQxRtRcIm5-QEGQfDgaFX1v5ljSHRNiFGj4rHp7a0mE2dnJt2zxv32dtgQxIN1aaj6vcfrJ8RzhDcI1L4lQDg7AdRKwiOxINSmJgJ6LBaAqqmByD4VhzlfQxmljQJciNOjak7d1HMdE99seQi7yk9TGn24quaxSlzO_IurTRfSOF3tchd8X-VhvI2-76vJJ7_hmVN-Jp6UTebD-_dAfH__7tvxh_r80_L0-Oi8DhpR19GsYrtaa2SKIRoGrcjLJijrteE1tuW0spEUrGXkECiyIYshKGMNqUYeiFd73xKyBM6z23Q5cN_7gcdtdgiIBBJaXdAX_6DX4zYNJZ1rgUyrlLQFer2Hyv9yThzdlLqNT7vi5O6adX83W_CX954-lyZi8kPo8oOGtMamMVg4ueduu553__V0Z8vLE7Qg7xLXe1WXZ_79oPLppzNWWu1-XCzd14sv9vNHeelA_gE5yZU6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902694437</pqid></control><display><type>article</type><title>A triple-frequency approach to retrieve microphysical snowfall parameters</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kneifel, S. ; Kulie, M. S. ; Bennartz, R.</creator><creatorcontrib>Kneifel, S. ; Kulie, M. S. ; Bennartz, R.</creatorcontrib><description>Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases.
Key Points
Scattering properties of various snowflake models are compared
Triple‐frequency approach allows to distinguish between different snow habits</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD015430</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Precipitation ; Remote sensing ; Snow ; snow scattering ; snowfall microphysics ; triple-frequency radar</subject><ispartof>Journal of Geophysical Research, 2011-06, Vol.116 (D11), p.n/a, Article D11203</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</citedby><cites>FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD015430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD015430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25518861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kneifel, S.</creatorcontrib><creatorcontrib>Kulie, M. S.</creatorcontrib><creatorcontrib>Bennartz, R.</creatorcontrib><title>A triple-frequency approach to retrieve microphysical snowfall parameters</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases.
Key Points
Scattering properties of various snowflake models are compared
Triple‐frequency approach allows to distinguish between different snow habits</description><subject>Atmospheric sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Precipitation</subject><subject>Remote sensing</subject><subject>Snow</subject><subject>snow scattering</subject><subject>snowfall microphysics</subject><subject>triple-frequency radar</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rFEEQxRtRcIm5-QEGQfDgaFX1v5ljSHRNiFGj4rHp7a0mE2dnJt2zxv32dtgQxIN1aaj6vcfrJ8RzhDcI1L4lQDg7AdRKwiOxINSmJgJ6LBaAqqmByD4VhzlfQxmljQJciNOjak7d1HMdE99seQi7yk9TGn24quaxSlzO_IurTRfSOF3tchd8X-VhvI2-76vJJ7_hmVN-Jp6UTebD-_dAfH__7tvxh_r80_L0-Oi8DhpR19GsYrtaa2SKIRoGrcjLJijrteE1tuW0spEUrGXkECiyIYshKGMNqUYeiFd73xKyBM6z23Q5cN_7gcdtdgiIBBJaXdAX_6DX4zYNJZ1rgUyrlLQFer2Hyv9yThzdlLqNT7vi5O6adX83W_CX954-lyZi8kPo8oOGtMamMVg4ueduu553__V0Z8vLE7Qg7xLXe1WXZ_79oPLppzNWWu1-XCzd14sv9vNHeelA_gE5yZU6</recordid><startdate>20110610</startdate><enddate>20110610</enddate><creator>Kneifel, S.</creator><creator>Kulie, M. S.</creator><creator>Bennartz, R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope></search><sort><creationdate>20110610</creationdate><title>A triple-frequency approach to retrieve microphysical snowfall parameters</title><author>Kneifel, S. ; Kulie, M. S. ; Bennartz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Precipitation</topic><topic>Remote sensing</topic><topic>Snow</topic><topic>snow scattering</topic><topic>snowfall microphysics</topic><topic>triple-frequency radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kneifel, S.</creatorcontrib><creatorcontrib>Kulie, M. S.</creatorcontrib><creatorcontrib>Bennartz, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kneifel, S.</au><au>Kulie, M. S.</au><au>Bennartz, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A triple-frequency approach to retrieve microphysical snowfall parameters</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-06-10</date><risdate>2011</risdate><volume>116</volume><issue>D11</issue><epage>n/a</epage><artnum>D11203</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases.
Key Points
Scattering properties of various snowflake models are compared
Triple‐frequency approach allows to distinguish between different snow habits</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD015430</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-06, Vol.116 (D11), p.n/a, Article D11203 |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1011203095 |
source | Wiley-Blackwell AGU Digital Library; Wiley-Blackwell Read & Publish Collection |
subjects | Atmospheric sciences Earth sciences Earth, ocean, space Exact sciences and technology Geophysics Precipitation Remote sensing Snow snow scattering snowfall microphysics triple-frequency radar |
title | A triple-frequency approach to retrieve microphysical snowfall parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20triple-frequency%20approach%20to%20retrieve%20microphysical%20snowfall%20parameters&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Kneifel,%20S.&rft.date=2011-06-10&rft.volume=116&rft.issue=D11&rft.epage=n/a&rft.artnum=D11203&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD015430&rft_dat=%3Cproquest_cross%3E1011203095%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902694437&rft_id=info:pmid/&rfr_iscdi=true |