Loading…

A triple-frequency approach to retrieve microphysical snowfall parameters

Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 2011-06, Vol.116 (D11), p.n/a, Article D11203
Main Authors: Kneifel, S., Kulie, M. S., Bennartz, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483
cites cdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483
container_end_page n/a
container_issue D11
container_start_page
container_title Journal of Geophysical Research
container_volume 116
creator Kneifel, S.
Kulie, M. S.
Bennartz, R.
description Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases. Key Points Scattering properties of various snowflake models are compared Triple‐frequency approach allows to distinguish between different snow habits
doi_str_mv 10.1029/2010JD015430
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1011203095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011203095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</originalsourceid><addsrcrecordid>eNp9kE9rFEEQxRtRcIm5-QEGQfDgaFX1v5ljSHRNiFGj4rHp7a0mE2dnJt2zxv32dtgQxIN1aaj6vcfrJ8RzhDcI1L4lQDg7AdRKwiOxINSmJgJ6LBaAqqmByD4VhzlfQxmljQJciNOjak7d1HMdE99seQi7yk9TGn24quaxSlzO_IurTRfSOF3tchd8X-VhvI2-76vJJ7_hmVN-Jp6UTebD-_dAfH__7tvxh_r80_L0-Oi8DhpR19GsYrtaa2SKIRoGrcjLJijrteE1tuW0spEUrGXkECiyIYshKGMNqUYeiFd73xKyBM6z23Q5cN_7gcdtdgiIBBJaXdAX_6DX4zYNJZ1rgUyrlLQFer2Hyv9yThzdlLqNT7vi5O6adX83W_CX954-lyZi8kPo8oOGtMamMVg4ueduu553__V0Z8vLE7Qg7xLXe1WXZ_79oPLppzNWWu1-XCzd14sv9vNHeelA_gE5yZU6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902694437</pqid></control><display><type>article</type><title>A triple-frequency approach to retrieve microphysical snowfall parameters</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kneifel, S. ; Kulie, M. S. ; Bennartz, R.</creator><creatorcontrib>Kneifel, S. ; Kulie, M. S. ; Bennartz, R.</creatorcontrib><description>Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases. Key Points Scattering properties of various snowflake models are compared Triple‐frequency approach allows to distinguish between different snow habits</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD015430</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Precipitation ; Remote sensing ; Snow ; snow scattering ; snowfall microphysics ; triple-frequency radar</subject><ispartof>Journal of Geophysical Research, 2011-06, Vol.116 (D11), p.n/a, Article D11203</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</citedby><cites>FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD015430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD015430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25518861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kneifel, S.</creatorcontrib><creatorcontrib>Kulie, M. S.</creatorcontrib><creatorcontrib>Bennartz, R.</creatorcontrib><title>A triple-frequency approach to retrieve microphysical snowfall parameters</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases. Key Points Scattering properties of various snowflake models are compared Triple‐frequency approach allows to distinguish between different snow habits</description><subject>Atmospheric sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Precipitation</subject><subject>Remote sensing</subject><subject>Snow</subject><subject>snow scattering</subject><subject>snowfall microphysics</subject><subject>triple-frequency radar</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rFEEQxRtRcIm5-QEGQfDgaFX1v5ljSHRNiFGj4rHp7a0mE2dnJt2zxv32dtgQxIN1aaj6vcfrJ8RzhDcI1L4lQDg7AdRKwiOxINSmJgJ6LBaAqqmByD4VhzlfQxmljQJciNOjak7d1HMdE99seQi7yk9TGn24quaxSlzO_IurTRfSOF3tchd8X-VhvI2-76vJJ7_hmVN-Jp6UTebD-_dAfH__7tvxh_r80_L0-Oi8DhpR19GsYrtaa2SKIRoGrcjLJijrteE1tuW0spEUrGXkECiyIYshKGMNqUYeiFd73xKyBM6z23Q5cN_7gcdtdgiIBBJaXdAX_6DX4zYNJZ1rgUyrlLQFer2Hyv9yThzdlLqNT7vi5O6adX83W_CX954-lyZi8kPo8oOGtMamMVg4ueduu553__V0Z8vLE7Qg7xLXe1WXZ_79oPLppzNWWu1-XCzd14sv9vNHeelA_gE5yZU6</recordid><startdate>20110610</startdate><enddate>20110610</enddate><creator>Kneifel, S.</creator><creator>Kulie, M. S.</creator><creator>Bennartz, R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope></search><sort><creationdate>20110610</creationdate><title>A triple-frequency approach to retrieve microphysical snowfall parameters</title><author>Kneifel, S. ; Kulie, M. S. ; Bennartz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Precipitation</topic><topic>Remote sensing</topic><topic>Snow</topic><topic>snow scattering</topic><topic>snowfall microphysics</topic><topic>triple-frequency radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kneifel, S.</creatorcontrib><creatorcontrib>Kulie, M. S.</creatorcontrib><creatorcontrib>Bennartz, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kneifel, S.</au><au>Kulie, M. S.</au><au>Bennartz, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A triple-frequency approach to retrieve microphysical snowfall parameters</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-06-10</date><risdate>2011</risdate><volume>116</volume><issue>D11</issue><epage>n/a</epage><artnum>D11203</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Backscattering and extinction properties of various snow particle models are studied for three typical cloud radar frequency ranges, namely Ku band, Ka band, and W band, both in terms of their individual scattering properties as well as averaged over size distributions. Models studied include soft spheres, randomly oriented pristine nonspherical particles and complex aggregates, as well as horizontally aligned spheroids. It is shown that the concurrent use of Ku/Ka band and Ka/W band dual wavelength ratios (DWR) allows for a separation of different snow particle habits. It is further shown that triple‐frequency approaches constrain the slope parameter of exponential size distributions more tightly than conventional single DWR approaches can. Uncertainties introduced by unknown mass‐size relations for different snow particle habits remain a challenge when mass‐related quantities are to be derived. Attenuation by snow, especially at W band, is found to potentially alter these results, albeit moderately, without affecting the general conclusions. Sensitivity studies performed with respect to cutoffs in the simulated size distribution highlight potential benefits of including larger particles in future scattering databases. Key Points Scattering properties of various snowflake models are compared Triple‐frequency approach allows to distinguish between different snow habits</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD015430</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2011-06, Vol.116 (D11), p.n/a, Article D11203
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1011203095
source Wiley-Blackwell AGU Digital Library; Wiley-Blackwell Read & Publish Collection
subjects Atmospheric sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
Precipitation
Remote sensing
Snow
snow scattering
snowfall microphysics
triple-frequency radar
title A triple-frequency approach to retrieve microphysical snowfall parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20triple-frequency%20approach%20to%20retrieve%20microphysical%20snowfall%20parameters&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Kneifel,%20S.&rft.date=2011-06-10&rft.volume=116&rft.issue=D11&rft.epage=n/a&rft.artnum=D11203&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD015430&rft_dat=%3Cproquest_cross%3E1011203095%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5115-f6bf9bd51e2fcf6e0542a38c47a56ed19d51b7f240d3fecc2fe6271cc46762483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902694437&rft_id=info:pmid/&rfr_iscdi=true